Recent Advancements in Enzyme-Based Lateral Flow Immunoassays
Abstract
:1. Introduction
2. Enzyme-Labeled Conjugates in LFIA
3. Modification of MNPs Labels with Enzyme: Enhancing LFIA Performance
4. Nanozymes
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Glad, C.; Grubb, A. Immunocapillary migration with enzyme labeled antibodies: Rapid quantification of C-reactive protein in human plasma. Anal. Biochem. 1981, 116, 6. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, T.; Wang, W.; Wen, Y.; Li, K.; Qian, L.; Zhang, X.; Liu, G. Lateral flow biosensors based on the use of micro- and nanomaterials: A review on recent developments. Microchim. Acta 2020, 187, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Mak, W.C.; Beni, V.; Turner, A.P. Lateral-flow technology: From visual to instrumental. TrAC Trends Anal. Chem. 2016, 79, 297–305. [Google Scholar] [CrossRef]
- Mahmoudi, T.; de la Guardia, M.; Baradaran, B. Lateral flow assays towards point-of-care cancer detection: A review of cur-rent progress and future trends. TrAC-Trend Anal. Chem. 2020, 125, 115842. [Google Scholar] [CrossRef]
- Banerjee, R.; Jaiswal, A. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst 2018, 143, 1970–1996. [Google Scholar] [CrossRef]
- Fresco-Taboada, A.; Risalde, M.A.; Gortázar, C.; Tapia, I.; González, I.; Venteo, Á.; Sanz, A.; Rueda, P. A lateral flow assay for the rapid diagnosis of Mycobacterium bovis infection in wild boar. Transbound. Emerg. Dis. 2019, 66, 2175–2179. [Google Scholar] [CrossRef] [PubMed]
- Gusi, A.M.; Bertu, W.J.; De Miguel, M.J.; Dieste-Pérez, L.; Smits, H.L.; Ocholi, R.A.; Blasco, J.M.; Moriyón, I.; Muñoz, P.M. Comparative performance of lateral flow immunochromatography, iELISA and Rose Bengal tests for the diagnosis of cattle, sheep, goat and swine brucellosis. PLoS Negl. Trop. Dis. 2019, 13, e0007509. [Google Scholar] [CrossRef]
- Tripathi, P.; Upadhyay, N.; Nara, S. Recent advancements in lateral flow immunoassays: A journey for toxin detection in food. Crit. Rev. Food Sci. Nutr. 2018, 58, 1715–1734. [Google Scholar] [CrossRef]
- Zhang, L.; Dou, X.-W.; Zhang, C.; Logrieco, A.F.; Yang, M.-H. A Review of current methods for analysis of mycotoxins in herbal medicines. Toxins 2018, 10, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Wang, Q.; Zheng, Y.; Peng, T.; Yao, K.; Xie, S.; Zhang, X.; Xia, X.; Li, J.; Jiang, H. Development of a quantitative fluorescence-based lateral flow immunoassay for determination of chloramphenicol, thiamphenicol and florfenicol in milk. Food Agric. Immunol. 2018, 29, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Sanchis, A.; Salvador, J.-P.; Marco, M.-P. Multiplexed immunochemical techniques for the detection of pollutants in aquatic environments. TrAC Trends Anal. Chem. 2018, 106, 1–10. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, M.; Kong, N.; Liu, J. Lab-on-paper micro- and nano-analytical devices: Fabrication, modification, detection and emerging applications. Microchim. Acta 2016, 183, 1521–1542. [Google Scholar] [CrossRef]
- Linares, E.M.; Kubota, L.T.; Michaelis, J.; Thalhammer, S. Enhancement of the detection limit for lateral flow immunoassays: Evaluation and comparison of bioconjugates. J. Immunol. Methods 2012, 375, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Quesada-González, D.; Merkoçi, A. Nanoparticle-based lateral flow biosensors. Biosens. Bioelectron. 2015, 73, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.-T.; Song, S.; Park, S.; Joo, C. Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay. Biosens. Bioelectron. 2020, 152, 112015. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.sterilab.co.uk/products/urinalysis1/analyzers/urine-analyzer-urilyzer100/ (accessed on 7 May 2021).
- Available online: https://www.generon.it/prodotto/quicktox-ochratoxin-a-quantitative-kit-for-coffee/ (accessed on 7 May 2021).
- Available online: https://www.generon.it/prodotto/totaltox-test-rapidi-per-la-ricerca-di-micotossine-misura-di-fumonisina-in-cereali-mangimi-e-alimenti-quantifica-su-quickscan/ (accessed on 7 May 2021).
- Available online: http://en.bioeasy.com/?page_id=175 (accessed on 7 May 2021).
- Roda, A.; Cavalera, S.; Di Nardo, F.; Calabria, D.; Rosati, S.; Simoni, P.; Colitti, B.; Baggiani, C.; Roda, M.; Anfossi, L. Dual lateral flow optical/chemiluminescence immunosensors for the rapid detection of salivary and serum IgA in patients with COVID-19 disease. Biosens. Bioelectron. 2021, 172, 112765. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, F.; Alladio, E.; Baggiani, C.; Cavalera, S.; Giovannoli, C.; Spano, G.; Anfossi, L. Colour-encoded lateral flow im-munoassay for the simultaneous detection of aflatoxin B1 and type-B fumonisins in a single Test line. Talanta 2019, 192, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Urusov, A.E.; Zherdev, A.V.; Dzantiev, B.B. Towards lateral flow quantitative assays: Detection approaches. Biosensors 2019, 9, 89. [Google Scholar] [CrossRef] [Green Version]
- Kasetsirikul, S.; Shiddiky, M.J.A.; Nguyen, N.-T. Challenges and perspectives in the development of paper-based lateral flow assays. Microfluid. Nanofluid. 2020, 24, 1–18. [Google Scholar] [CrossRef]
- Jia, X.; Wang, C.; Rong, Z.; Li, J.; Wang, K.; Qie, Z.; Xiao, R.; Wang, S. Dual dye-loaded Au@Ag coupled to a lateral flow immunoassay for the accurate and sensitive detection of Mycoplasma pneumoniae infection. RSC Adv. 2018, 8, 21243–21251. [Google Scholar] [CrossRef] [Green Version]
- Khlebtsov, B.N.; Bratashov, D.N.; Byzova, N.A.; Dzantiev, B.B.; Khlebtsov, N.G. SERS-based lateral flow immunoassay of troponin I by using gap-enhanced Raman tags. Nano Res. 2019, 12, 413–420. [Google Scholar] [CrossRef]
- Qin, Z.; Chan, W.C.W.; Boulware, D.R.; Akkin, T.; Butler, E.K.; Bischof, J.C. Significantly improved analytical sensitivity of lateral flow immunoassays by using thermal contrast. Angew. Chem. Int. Ed. 2012, 51, 4358–4361. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.; Liu, J.; Zhang, J.; Zhang, H. An immunofiltration strip method based on the photothermal effect of gold nanoparticles for the detection of Escherichia coli O157:H7. Analyst 2018, 144, 573–578. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Wen, W.; Sheng, W.; Wang, J.; Wang, S.; Wang, J. A high-sensitivity thermal analysis immunochromatographic sensor based on au nanoparticle-enhanced two-dimensional black phosphorus photothermal-sensing materials. Biosens. Bioelectron. 2019, 133, 223–229. [Google Scholar] [CrossRef]
- Marquina, C.; de Teresa, J.; Serrate, D.; Marzo, J.; Cardoso, F.; Saurel, D.; Cardoso, S.; Freitas, P.; Ibarra, M. GMR sensors and magnetic nanoparticles for immuno-chromatographic assays. J. Magn. Magn. Mater. 2012, 324, 3495–3498. [Google Scholar] [CrossRef] [Green Version]
- Taton, K.; Johnson, D.; Guire, P.; Lange, E.; Tondra, M. Lateral flow immunoassay using magnetoresistive sensors. J. Magn. Magn. Mater. 2009, 321, 1679–1682. [Google Scholar] [CrossRef]
- Orlov, A.V.; Znoyko, S.L.; Cherkasov, V.R.; Nikitin, M.P.; Nikitin, P.I. Multiplex biosensing based on highly sensitive magnetic nanolabel quantification: Rapid detection of botulinum neurotoxins A, B, and E in liquids. Anal. Chem. 2016, 88, 10419–10426. [Google Scholar] [CrossRef]
- Lei, H.; Wang, K.; Ji, X.; Cui, D. Contactless measurement of magnetic nanoparticles on lateral flow strips using tunneling magnetoresistance (TMR) sensors in differential configuration. Sensors 2016, 16, 2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, X.-H.; Liu, H.-F.; Tong, Z.-Y.; Du, B.; Liu, S.; Liu, B.; Liu, Z.-W.; Gao, C.; Wang, J.; Dong, H.; et al. A new rapid detection method for ricin based on tunneling magnetoresistance biosensor. Sens. Actuators B Chem. 2019, 284, 638–649. [Google Scholar] [CrossRef]
- Hong, L.; Wang, K.; Yan, W.; Xu, H.; Chen, Q.; Zhang, Y.; He, J. High performance immunochromatographic assay for sim-ultaneous quantitative detection of multiplex cardiac markers based on magnetic nanobeads. Theranostics 2018, 8, 6121. [Google Scholar] [CrossRef]
- Gas, F.; Baus, B.; Queré, J.; Chapelle, A.; Dreanno, C. Rapid detection and quantification of the marine toxic algae, Alexandrium minutum, using a super-paramagnetic immunochromatographic strip test. Talanta 2016, 147, 581–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://www.ovvidx.com/miatekr-technology.php (accessed on 7 May 2021).
- Fang, C.-C.; Chou, C.-C.; Yang, Y.-Q.; Wei-Kai, T.; Wang, Y.-T.; Chan, Y.-H.; Tsai, W.-K. Multiplexed detection of tumor markers with multicolor polymer dot-based immunochromatography test strip. Anal. Chem. 2018, 90, 2134–2140. [Google Scholar] [CrossRef] [PubMed]
- Sapountzi, E.A.; Tragoulias, S.S.; Kalogianni, D.P.; Ioannou, P.C.; Christopoulos, T.K. Lateral flow devices for nucleic acid analysis exploiting quantum dots as reporters. Anal. Chim. Acta 2015, 864, 48–54. [Google Scholar] [CrossRef]
- Rong, Z.; Wang, Q.; Sun, N.; Jia, X.; Wang, K.; Xiao, R.; Wang, S. Smartphone-based fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of Zika virus nonstructural protein. Anal. Chim. Acta 2019, 1055, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wang, K.; Xiao, K.; Qin, W.; Lu, W.; Tao, W.; Cui, D. Smartphone-based dual-modality imaging system for quantita-tive detection of color or fluorescent lateral flow immunochromatographic strips. Nanoscale Res. Lett. 2017, 12, 1–13. [Google Scholar] [CrossRef]
- Liu, Z.; Hua, Q.; Wang, J.; Liang, Z.; Li, J.; Wu, J.; Shen, X.; Lei, H.; Li, X. A smartphone-based dual detection mode device integrated with two lateral flow immunoassays for multiplex mycotoxins in cereals. Biosens. Bioelectron. 2020, 158, 112178. [Google Scholar] [CrossRef]
- Ruiz-Vega, G.; Kitsara, M.; Pellitero, M.A.; Baldrich, E.; Del Campo, F.J. Electrochemical lateral flow devices: Towards rapid immunomagnetic assays. ChemElectroChem 2017, 4, 880–889. [Google Scholar] [CrossRef]
- Tonello, S.; Stradolini, F.; Abate, G.; Uberti, D.; Serpelloni, M.; Carrara, S.; Sardini, E. Electrochemical detection of different p53 conformations by using nanostructured surfaces. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef]
- Hong, D.; Jo, E.J.; Kim, K.; Song, M.B.; Kim, M.G. Ru(bpy)32+-loaded mesoporous silica nanoparticles as electrochemiluminescent probes of a lateral flow immunosensor for highly sensitive and quantitative detection of Troponin I. Small 2020, 16, 2004535. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Satake, A.; Matsumoto, M.; Kido, Y.; Tsuji, A.; Ito, K.; Maeda, M. Monoclonal-based enzyme-linked immuno-sorbent assay and immunochromatographic rapid assay for monensin. Analyst 1998, 123, 2573–2578. [Google Scholar] [CrossRef]
- Ono, T.; Kawamura, M.; Arao, S.; Nariuchi, H. A highly sensitive quantitative immunochromatography assay for antigen-specific IgE. J. Immunol. Methods 2003, 272, 211–218. [Google Scholar] [CrossRef]
- Panferov, V.G.; Safenkova, I.V.; Varitsev, Y.A.; Zherdev, A.V.; Dzantiev, B.B. Enhancement of lateral flow immunoassay by alkaline phosphatase: A simple and highly sensitive test for potato virus X. Microchim. Acta 2017, 185, 25. [Google Scholar] [CrossRef]
- Du, D.; Wang, J.; Wang, L.; Lu, D.; Lin, Y. Integrated lateral flow test strip with electrochemical sensor for quantification of phosphorylated cholinesterase: Biomarker of exposure to organophosphorus agents. Anal. Chem. 2012, 84, 1380–1385. [Google Scholar] [CrossRef]
- Farzin, L.; Shamsipur, M.; Samandari, L.; Sheibani, S. Advances in the design of nanomaterial-based electrochemical affinity and enzymatic biosensors for metabolic biomarkers: A review. Microchim. Acta 2018, 185, 276. [Google Scholar] [CrossRef]
- Safronova, V.A.; Samsonova, J.V.; Grigorenko, V.G.; Osipov, A.P. Lateral flow immunoassay for progesterone detection. Mosc. Univ. Chem. Bull. 2012, 67, 241–248. [Google Scholar] [CrossRef]
- Cho, I.-H.; Irudayaraj, J. Lateral-flow enzyme immunoconcentration for rapid detection of Listeria monocytogenes. Anal. Bioanal. Chem. 2013, 405, 3313–3319. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.K.; Kim, J.W.; Kim, J.M.; Kim, M.G. High sensitive and broad-range detection of cortisol in human saliva using a trap lateral flow immunoassay (trapLFI) sensor. Analyst 2018, 143, 3883–3889. [Google Scholar] [CrossRef] [PubMed]
- Kawde, A.-N.; Mao, X.; Xu, H.; Zeng, Q.; He, Y.; Liu, G. Moving Enzyme-Linked ImmunoSorbent Assay to the Point-of-Care dry-reagent strip biosensors. Am. J. Biomed. Sci. 2010, 2, 23–32. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Wang, S. Development of multianalyte flow-through and lateral-flow assays using gold particles and horseradish peroxidase as tracers for the rapid determination of carbaryl and endosulfan in agricultural products. J. Agric. Food Chem. 2006, 54, 2502–2507. [Google Scholar] [CrossRef]
- Samsonova, J.V.; Safronova, V.A.; Osipov, A.P. Pretreatment-free lateral flow enzyme immunoassay for progesterone detection in whole cows’ milk. Talanta 2015, 132, 685–689. [Google Scholar] [CrossRef]
- Dos Santos, G.P.; Corrêa, C.C.; Kubota, L.T. A simple, sensitive and reduced cost paper-based device with low quantity of chemicals for the early diagnosis of Plasmodium falciparum malaria using an enzyme-based colorimetric assay. Sens. Actuators B Chem. 2018, 255, 2113–2120. [Google Scholar] [CrossRef]
- Marzocchi, E.; Grilli, S.; Della Ciana, L.; Prodi, L.; Mirasoli, M.; Roda, A. Chemiluminescent detection systems of horseradish peroxidase employing nucleophilic acylation catalysts. Anal. Biochem. 2008, 377, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Roda, A.; Calabretta, M.M.; Calabria, D.; Caliceti, C.; Cevenini, L.; Lopreside, A.; Zangheri, M. Smartphone-based biosensors. Past, present and future challenges of biosensors and bioanalytical tools in analytical chemistry: A tribute to Professor Marco Mascini. Compr. Anal. Chem. 2017, 77, 237–286. [Google Scholar]
- Roda, A.; Arduini, F.; Mirasoli, M.; Zangheri, M.; Fabiani, L.; Colozza, N.; Marchegiani, E.; Simoni, P.; Moscone, D. A challenge in biosensors: Is it better to measure a photon or an electron for ultrasensitive detection? Biosens. Bioelectron. 2020, 155, 112093. [Google Scholar] [CrossRef] [PubMed]
- Calabretta, M.M.; Zangheri, M.; Lopreside, A.; Marchegiani, E.; Montali, L.; Simoni, P.; Roda, A. Precision medicine, bio-analytics and nanomaterials: Toward a new generation of personalized portable diagnostics. Analyst 2020, 145, 2841–2853. [Google Scholar] [CrossRef]
- Zangheri, M.; Di Nardo, F.; Anfossi, L.; Giovannoli, C.; Baggiani, C.; Roda, A.; Mirasoli, M. A multiplex chemiluminescent biosensor for type B-fumonisins and aflatoxin B1 quantitative detection in maize flour. Analyst 2014, 140, 358–365. [Google Scholar] [CrossRef] [Green Version]
- Caputo, D.; De Cesare, G.; Dolci, L.S.; Mirasoli, M.; Nascetti, A.; Roda, A.; Scipinotti, R. Microfluidic chip with integrated a-Si:H photodiodes for chemiluminescence-based bioassays. IEEE Sens. J. 2013, 13, 2595–2602. [Google Scholar] [CrossRef]
- Zangheri, M.; Di Nardo, F.; Mirasoli, M.; Anfossi, L.; Nascetti, A.; Caputo, D.; Roda, A. Chemiluminescence lateral flow im-munoassay cartridge with integrated amorphous silicon photosensors array for human serum albumin detection in urine samples. Anal. Anal. Bioanal. Chem. 2016, 408, 8869–8879. [Google Scholar] [CrossRef] [Green Version]
- Zangheri, M.; Cevenini, L.; Anfossi, L.; Baggiani, C.; Simoni, P.; Di Nardo, F.; Roda, A. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens. Bioelectron. 2015, 64, 63–68. [Google Scholar] [CrossRef]
- Bhardwaj, J.; Sharma, A.; Jang, J. Vertical flow-based paper immunosensor for rapid electrochemical and colorimetric detec-tion of influenza virus using a different pore size sample pad. Biosens. Bioelectron. 2019, 126, 36–43. [Google Scholar] [CrossRef]
- Dempsey, E.; Rathod, D. Disposable printed lateral flow electrochemical immunosensors for human Cardiac Troponin T. IEEE Sens. J. 2018, 18, 1828–1834. [Google Scholar] [CrossRef]
- Cho, J.H.; Paek, E.H.; Cho, I.H.; Paek, S.H. An enzyme immunoanalytical system based on sequential cross-flow chromatography. Anal. Chem. 2005, 77, 4091–4097. [Google Scholar] [CrossRef] [PubMed]
- Sciutto, G.; Zangheri, M.; Anfossi, L.; Guardigli, M.; Prati, S.; Mirasoli, M.; Baggiani, C.; Di Nardo, F.; Mazzeo, R.; Roda, A. Miniaturized biosensors to preserve and monitor cultural heritage: From medical to conservation diagnosis. Angew. Chem. Int. Ed. 2018, 130, 7507–7511. [Google Scholar] [CrossRef]
- Zangheri, M.; Mirasoli, M.; Guardigli, M.; Di Nardo, F.; Anfossi, L.; Baggiani, C.; Simoni, P.; Benassai, M.; Roda, A. Chemiluminescence-based biosensor for monitoring astronauts’ health status during space missions: Results from the International Space Station. Biosens. Bioelectron. 2019, 129, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Joung, H.A.; Oh, Y.K.; Kim, M.G. An automatic enzyme immunoassay based on a chemiluminescent lateral flow immunosensor. Biosens. Bioelectron. 2014, 53, 330–335. [Google Scholar] [CrossRef]
- Ye, H.; Xia, X. Enhancing the sensitivity of colorimetric lateral flow assay (CLFA) through signal amplification techniques. J. Mater. Chem. B 2018, 6, 7102–7111. [Google Scholar] [CrossRef]
- Parolo, C.; de la Escosura-Muñiz, A.; Merkoçi, A. Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosens. Bioelectron. 2013, 40, 412–416. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.; Ma, Y.; Zhang, A.; Zhang, L.; Zeng, L.; Liu, G. Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal. Chem. 2009, 81, 1660–1668. [Google Scholar] [CrossRef]
- He, Y.; Zhang, S.; Zhang, X.; Baloda, M.; Gurung, A.S.; Xu, H.; Liu, G. Ultrasensitive nucleic acid biosensor based on enzyme–gold nanoparticle dual label and lateral flow strip biosensor. Biosens. Bioelectron. 2011, 26, 2018–2024. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Sun, J.; Xianyu, Y.; Yin, B.; Niu, Y.; Wang, S.; Cao, F.; Zhang, X.; Wang, Y.; Jiang, X. A dual-readout chemiluminescent-gold lateral flow test for multiplex and ultrasensitive detection of disease biomarkers in real samples. Nanoscale 2016, 8, 15205–15212. [Google Scholar] [CrossRef]
- Deng, J.; Yang, M.; Wu, J.; Zhang, W.; Jiang, X. A self-contained chemiluminescent lateral flow assay for point-of-care testing. Anal. Chem. 2018, 90, 9132–9137. [Google Scholar] [CrossRef]
- Han, G.-R.; Kim, M.-G. Highly sensitive chemiluminescence-based lateral flow immunoassay for Cardiac Troponin I detection in human serum. Sensors 2020, 20, 2593. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.thermofisher.com/elisa/product/IgG-Total-Human-ELISA-Kit/BMS2091 (accessed on 7 May 2021).
- Available online: https://www.abcam.com/human-igg-elisa-kit-ab100547.html (accessed on 7 May 2021).
- Wei, H.; Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [CrossRef]
- Liang, M.; Yan, X. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, H.; Zhang, Z.; Wang, E.; Dong, S. Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal. Chem. 2018, 105, 218–224. [Google Scholar] [CrossRef]
- Liu, B.; Han, X.; Liu, J. Iron oxide nanozyme catalyzed synthesis of fluorescent polydopamine for light-up Zn2+ detection. Nanoscale 2016, 8, 13620–13626. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Niu, X.; Li, X.; He, Y.; Song, H.; Peng, Y.; Pan, J.; Qiu, F.; Zhao, H.; Lan, M. A smartphone-integrated ready-to-use paper-based sensor with mesoporous carbon-dispersed Pd nanoparticles as a highly active peroxidase mimic for H2O2 detection. Sens. Actuators B Chem. 2018, 265, 412–420. [Google Scholar] [CrossRef]
- Zhang, W.; Niu, X.; Meng, S.; Li, X.; He, Y.; Pan, J.; Lan, M. Histidine-mediated tunable peroxidase-like activity of nanosized Pd for photometric sensing of Ag+. Sens. Actuators B Chem. 2018, 273, 400–407. [Google Scholar] [CrossRef]
- Zuo, X.; Peng, C.; Huang, Q.; Song, S.; Wang, L.; Li, D.; Fan, C. Design of a carbon nanotube/magnetic nanoparticle-based peroxidase-like nanocomplex and its application for highly efficient catalytic oxidation of phenols. Nano Res. 2009, 2, 617–623. [Google Scholar] [CrossRef] [Green Version]
- Fan, K.; Xi, J.; Fan, L.; Wang, P.; Zhu, C.; Tang, Y.; Gao, L. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Zhai, Y.; Zhu, C.; Wang, Z.; Dong, S. Bimetallic alloy nanowires and nanosponges: A comparative study of peroxidase mimetics and as enhanced catalysts for oxygen reduction reaction. Electrochem. Commun. 2013, 36, 22–25. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, L.; Shang, C.; Zhang, Z.; Dong, S. Triple-enzyme mimetic activity of nickel–palladium hollow nanoparticles and their application in colorimetric biosensing of glucose. Chem. Commun. 2016, 52, 5410–5413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, H.; Wang, E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem. 2008, 80, 2250–2254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Han, L.; Hu, P.; Wang, L.; Dong, S. TiO2 nanotube arrays: Intrinsic peroxidase mimetics. Chem. Commun. 2013, 49, 10480–10482. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Binyam, A.; Liu, M.; Wu, Y.; Li, F. Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules. Biosens. Bioelectron. 2016, 86, 432–438. [Google Scholar] [CrossRef]
- Guo, Y.; Deng, L.; Li, J.; Guo, S.; Wang, E.; Dong, S. Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activ-ity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 2011, 5, 1282–1290. [Google Scholar] [CrossRef]
- Niu, X.; Cheng, N.; Ruan, X.; Du, D.; Lin, Y. Review—Nanozyme-based immunosensors and immunoassays: Recent developments and future trends. J. Electrochem. Soc. 2019, 167, 037508. [Google Scholar] [CrossRef]
- Gao, Z.; Ye, H.; Tang, D.; Tao, J.; Habibi, S.; Minerick, A.; Xia, X. Platinum-decorated gold nanoparticles with dual function-alities for ultrasensitive colorimetric in vitro diagnostics. Nano Lett. 2017, 17, 5572–5579. [Google Scholar] [CrossRef]
- Wei, D.; Zhang, X.; Chen, B.; Zeng, K. Using bimetallic Au@ Pt nanozymes as a visual tag and as an enzyme mimic in enhanced sensitive lateral-flow immunoassays: Application for the detection of streptomycin. Anal. Anal. Chim. Acta 2020, 1126, 106–113. [Google Scholar] [CrossRef]
- Loynachan, C.N.; Thomas, M.R.; Gray, E.R.; Richards, D.A.; Kim, J.; Miller, B.S.; Brookes, J.C.; Agarwal, S.; Chudasama, V.; McKendry, R.A.; et al. Platinum nanocatalyst amplification: Redefining the gold standard for lateral flow immunoassays with ultrabroad dynamic range. ACS Nano 2018, 12, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Song, Y.; Wei, T.; Li, H.; Du, D.; Zhu, M.J.; Lin, Y. Sensitive detection of Escherichia coli O157: H7 using Pt–Au bi-metal nanoparticles with peroxidase-like amplification. Biosens. Bioelectron. 2016, 77, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yao, X.; Zhang, Y.; Wang, R.; Ji, Y.; Sun, J.; Zhang, D.; Wang, J. Functional nanozyme mediated multi-readout and label-free lateral flow immunoassay for rapid detection of Escherichia coli O157:H. Food Chem. 2020, 329, 127224. [Google Scholar] [CrossRef] [PubMed]
- Cheng, N.; Song, Y.; Zeinhom, M.M.; Chang, Y.C.; Sheng, L.; Li, H.; Lin, Y. Nanozyme-mediated dual immunoassay integrated with smartphone for use in simultaneous detection of pathogens. ACS Appl. Mater. Interf. 2017, 9, 40671–40680. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Dou, L.; Yao, X.; Zhang, W.; Zhao, M.; Yin, X.; Wang, J. Nanozyme amplification mediated on-demand multiplex lateral flow immunoassay with dual-readout and broadened detection range. Biosens. Bioelectron. 2020, 169, 112610. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yu, Q.; Qiu, W.; Li, K.; Qian, L.; Zhang, X.; Liu, G. Gold-platinum nanoflowers as a label and as an enzyme mimic for use in highly sensitive lateral flow immunoassays: Application to detection of rabbit IgG. Microchim. Acta 2019, 186, 357. [Google Scholar] [CrossRef]
- Ouyang, H.; Lu, Q.; Wang, W.; Song, Y.; Tu, X.; Zhu, C.; Smith, J.N.; Du, D.; Fu, Z.; Lin, Y. Dual-readout immunochromatographic assay by utilizing MnO2 nanoflowers as the unique colorimetric/chemiluminescent probe. Anal. Chem. 2018, 90, 5147–5152. [Google Scholar] [CrossRef]
- Bu, T.; Jia, P.; Sun, X.; Liu, Y.; Wang, Q.; Wang, L. Hierarchical molybdenum disulfide nanosheets based lateral flow immunoassay for highly sensitive detection of tetracycline in food samples. Sens. Actuators B Chem. 2020, 320, 128440. [Google Scholar] [CrossRef]
Technique | Detection Principle | Tracer | Limit of Detection | Reference |
---|---|---|---|---|
Colorimetric LFIA | Visual detection | AuNP | 50 ng mL−1 | [72] |
Colorimetric LFIA | Measurement of color intensity with a portable strip reader | AuNP | 2 ng mL−1 | [72] |
Colorimetric LFIA | Visual detection | HRP with metal enhancer (AuNPs) using TMB substrate | 5 ng mL−1 | [72] |
Colorimetric LFIA | Measurement of color intensity with a portable strip reader | HRP with metal enhancer (AuNPs) using TMB substrate | 200 pg mL−1 | [72] |
Colorimetric LFIA | Visual detection | HRP with metal enhancer (AuNPs) using AEC substrate | 5 ng mL−1 | [72] |
Colorimetric LFIA | Measurement of color intensity with a portable strip reader | HRP with metal enhancer (AuNPs) using AEC substrate | 310 pg mL−1 | [72] |
Colorimetric LFIA | Visual detection | HRP with metal enhancer (AuNPs) using DAB substrate | 50 ng mL−1 | [72] |
Colorimetric LFIA | Measurement of color intensity with a portable strip reader | HRP with metal enhancer (AuNPs) using DAB substrate | 1.6 ng mL−1 | [72] |
Colorimetric ELISA | Measurements of absorbance using a microwell plate reader | HRP using TMB substrate | 0.24 ng mL−1 | [78] |
Colorimetric ELISA | Measurements of absorbance using a microwell plate reader | HRP using TMB substrate | 20 pg mL−1 | [79] |
Technique | Detection Principle | Analyte | Limit of Detection | Reference |
---|---|---|---|---|
Enzyme as tracer | HRP (colorimetric) | Carbaryl, endosulfan | 10 μg L−1 (carbaryl), 1 μg L−1 (endosulfan) | [54] |
HRP (colorimetric) | Progesterone | 0.8 ng mL−1 | [55] | |
HRP (colorimetric) | Histidine-rich protein 2 of Plasmodium falciparum | 4.5 ng mL−1 (59 parasites μL−1) | [56] | |
HRP (colorimetric) | Cortisol | 9.9 pg mL−1 | [52] | |
HRP (chemiluminescent) | Human serum albumin (has) | 2.5 mg L−1 | [63] | |
HRP (chemiluminescent) | Cortisol | 0.3 ng mL−1 | [64] | |
HRP (chemiluminescent) | Hepatitis B surface antigen | 0.12 ng mL−1 | [67] | |
HRP (chemiluminescent) | Cortisol | 0.2 ng mL−1 | [69] | |
HRP (chemiluminescent) | C-reactive protein | 1.05 ng mL−1 | [70] | |
HRP (electrochemical) | H1N1 viruses | 4.7 PFU mL−1 | [65] | |
HRP (electrochemical) | Troponin T | 0.15 ng mL−1 | [66] | |
Modification of MNPs labels with enzyme | AuNP-HRP (colorimetric) | IgG | 200 pg mL−1 | [72] |
AuNP-HRP (colorimetric) | DNA sequence | 0.01 pM | [74] | |
AuNP-HRP (chemiluminescent) | α-fetoprotein (AFP), carcinoembryonic antigen (CEA), procalcitonin (PCT) | 0.2 ng mL−1 (CEA), 0.21 ng mL−1 (AFP), 0.02 pg mL−1 (PCT) | [75] | |
AuNP-HRP (chemiluminescent) | α-fetoprotein (AFP), folic acid (FA) | 0.27 ng mL−1 (AFP), 0.1 ng mL−1 (FA) | [76] | |
AuNP-HRP (chemiluminescent) | Human cardiac Troponin I | 5.6 pg mL−1 | [77] | |
Nanozyme | Au-Pt NPs (colorimetric) | Human prostate-specific antigen (PSA) | 3.1 pg mL−1 | [96] |
Au-Pt NPs (colorimetric) | Streptomycin | 0.1 ng mL−1 | [97] | |
Porous platinum core–shell nanocatalysts (PtNCs) (colorimetric) | p24 antigen | 0.8 pg mL−1 | [98] | |
Pt–Au NPs (colorimetric) | E. coli O157:H7 | 102 cells mL−1 | [99] | |
Mannose modified Prussian blue (colorimetric) | E. coli O157:H7 | 102 cfu mL−1 | [100] | |
Pt-Pd NPs (colorimetric) | Salmonella enteritidis, E. coli O157:H7 | 20 CFU mL−1 (Salmonella enteritidis), 34 CFU mL−1 (E. coli O157:H7) | [101] | |
Magnetic Prussian blue (colorimetric) | Ractopamine (RAC) and Clenbuterol (CLE) | 0.12 ng mL−1 (RAC), 0.20 ng mL−1 (CLE) | [102] | |
Gold-platinum nanoflowers (AuPt NFs) (colorimetric) | IgG | 5 pg mL−1 | [103] | |
Manganese dioxide nanoflowers (MnO2-NFs) (colorimetric) | Chlorpyrifos | 0.033 ng mL−1 | [104] | |
Molybdenum disulfide (MoS2) nanosheets (colorimetric) | Tetracycline | 0.012 ng mL−1 | [105] |
Tracer | Detection | Pros | Cons |
---|---|---|---|
Metal Nanoparticles (MNPs) | Qualitative information by visual detection; Quantitative information by measuring the intensity of the color using portable strip reader | No need to add reagents and substrate; MNPs can be immobilized on the conjugate pad and easily resolubilized by dispensing the sample; Stability; Long shelf-life | Relatively high detection limit |
Enzyme | Quantitative information can be obtained exploiting colorimetric, chemiluminescent, or electrochemical approach; Exploiting colorimetric approach, it is possible to obtain a qualitative response by visual detection | Higher sensitivity with respect to the use of MNPs; Lower limit of detection (from 5-fold to 100-fold with respect to the use of MNPs) | Addition of substrate; Limited shelf-life; The enzyme is better preserved in solution rather than adsorbed on paper-based materials |
Enzyme with MNPs | Qualitative visual information due to the accumulation of MNPs on the lines; Quantitative information obtained by adding the proper enzymatic substrate (colorimetric or chemiluminescent detection) | The surface of MNPs can be easily modified to afford secondary reactions or functionalized by suitable compounds for exploiting enzyme-based detection; AuNPs not only act as a direct label, but also as a carrier for multiple enzyme molecules, thus obtaining further signal amplification | Addition of substrate Limited shelf-life |
Nanozyme | Qualitative visual information due to the accumulation of tracers on the lines; Quantitative information obtained by adding the proper enzymatic substrate (colorimetric or chemiluminescent detection) | Higher stability; Longer shelf-life; Easily immobilized on paper-based materials | Addition of enzymatic substrate High cost |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calabria, D.; Calabretta, M.M.; Zangheri, M.; Marchegiani, E.; Trozzi, I.; Guardigli, M.; Michelini, E.; Di Nardo, F.; Anfossi, L.; Baggiani, C.; et al. Recent Advancements in Enzyme-Based Lateral Flow Immunoassays. Sensors 2021, 21, 3358. https://doi.org/10.3390/s21103358
Calabria D, Calabretta MM, Zangheri M, Marchegiani E, Trozzi I, Guardigli M, Michelini E, Di Nardo F, Anfossi L, Baggiani C, et al. Recent Advancements in Enzyme-Based Lateral Flow Immunoassays. Sensors. 2021; 21(10):3358. https://doi.org/10.3390/s21103358
Chicago/Turabian StyleCalabria, Donato, Maria Maddalena Calabretta, Martina Zangheri, Elisa Marchegiani, Ilaria Trozzi, Massimo Guardigli, Elisa Michelini, Fabio Di Nardo, Laura Anfossi, Claudio Baggiani, and et al. 2021. "Recent Advancements in Enzyme-Based Lateral Flow Immunoassays" Sensors 21, no. 10: 3358. https://doi.org/10.3390/s21103358
APA StyleCalabria, D., Calabretta, M. M., Zangheri, M., Marchegiani, E., Trozzi, I., Guardigli, M., Michelini, E., Di Nardo, F., Anfossi, L., Baggiani, C., & Mirasoli, M. (2021). Recent Advancements in Enzyme-Based Lateral Flow Immunoassays. Sensors, 21(10), 3358. https://doi.org/10.3390/s21103358