Mobility-Included DNN Partition Offloading from Mobile Devices to Edge Clouds
Abstract
:1. Introduction
2. Related Work
3. System Model
3.1. System Description
3.2. System Architecture
4. MDPO for Edge Computation Offloading
4.1. Problem Formulation
4.2. DAG-to-Chain Algorithm
Algorithm 1 The DAG-to-Chain Algorithm |
|
4.3. Chain-to-DAG Algorithm
Algorithm 2 The Chain-to-DAG Algorithm |
|
5. Evaluation
5.1. Experimental Environment
5.2. Latency Improvement
5.3. UE Velocity Variation
5.4. Comparing MDPO against Neurosurgeon
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 1, pp. 1097–1105. [Google Scholar]
- Graves, A.; Mohamed, A.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649. [Google Scholar]
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. Adv. Neural Inf. Process. Syst. 2014, 27, 3104–3112. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern, Recognition (CVPR), Boston, MA, USA, 8–10 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern, Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Chen, M.; Liang, B.; Dong, M. Multi-user multi-task offloading and resource allocation in mobile cloud systems. IEEE Trans. Wirel. Commun. 2018, 17, 6790–6805. [Google Scholar] [CrossRef] [Green Version]
- Alameddine, H.A.; Sharafeddine, S.; Sebbah, S.; Ayoubi, S.; Assi, C. Dynamic task offloading and scheduling for low-latency IoT services in multi-access edge computing. IEEE J. Sel. Areas Commun. 2019, 37, 668–682. [Google Scholar] [CrossRef]
- Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutor. 2017, 19, 1628–1656. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.C.; Patel, M.; Sabella, D.; Sprecher, N.; Young, V. Mobile edge computing-A key technology towards 5G. ETSI White Pap. 2015, 11, 1–16. [Google Scholar]
- Jošilo, S.; Dán, G. Selfish Decentralized Computation Offloading for Mobile Cloud Computing in Dense Wireless Networks. IEEE Trans. Mob. Comput. 2018, 18, 207–220. [Google Scholar] [CrossRef]
- Gao, G.; Xiao, M. Opportunistic Mobile Data Offloading with Deadline Constraints. IEEE Trans. Parallel Distrib. Syst. 2017, 28, 3584–3599. [Google Scholar] [CrossRef]
- Shaikh, A.; Kaur, M.J. Comprehensive Survey of Massive MIMO for 5G Communications. In Proceedings of the 2019 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, UAE, 26 March–10 April 2019; pp. 1–5. [Google Scholar]
- Zhang, Y.; Niyato, D.; Wang, P. Offloading in mobile cloudlet systems with intermittent connectivity. IEEE Trans. Mob. Comput. 2015, 14, 2516–2529. [Google Scholar] [CrossRef]
- Nadembega, A.; Hafid, A.S.; Brisebois, R. Mobility prediction model-based service migration procedure for follow me cloud to support QoS and QoE. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016. [Google Scholar]
- Satyanarayanan, M.; Bahl, P.; Caceres, R.; Davies, N. The case for VM-based cloudlets in mobile computing. IEEE Pervasive Comput. 2009, 8, 14–23. [Google Scholar] [CrossRef]
- Satyanarayanan, M. Pervasive computing: Vision and challenges. IEEE Pers. Commun. 2001, 8, 10–17. [Google Scholar] [CrossRef]
- Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog computing and its role in the Internet of Things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 17 August 2012; pp. 13–16. [Google Scholar]
- Zhu, J.; Chan, D.S.; Prabhu, M.S.; Natarajan, P.; Hu, H.; Bonomi, F. Improving Web sites performance using edge servers in fog computing architecture. In Proceedings of the 2013 IEEE Seventh International Symposium on Service-Oriented System Engineering, Redwood City, CA, USA, 25–28 March 2013; pp. 320–323. [Google Scholar]
- Cuervo, E.; Balasubramanian, A.; Cho, D.K.; Wolman, A.; Saroiu, S.; Chandra, R.; Bahl, P. MAUI: Making smartphones last longer with code offload. In Proceedings of the 8th International Conference on Mobile Systems, Applications and Services, San Francisco, CA, USA, 15–18 June 2010; pp. 49–62. [Google Scholar]
- Liu, J.; Mao, Y.; Zhang, J.; Letaief, K.B. Delay-optimal computation task scheduling for mobile-edge computing systems. In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; pp. 1451–1455. [Google Scholar]
- Yang, L.; Cao, J.; Cheng, H.; Ji, Y. Multi-user computation partitioning for latency sensitive mobile cloud applications. IEEE Trans. Comput. 2014, 64, 2253–2266. [Google Scholar] [CrossRef]
- Han, S.; Shen, H.; Philipose, M.; Agarwal, S.; Wolman, A.; Krishnamurthy, A. Mcdnn: An approximation-based execution framework for deep stream processing under resource constraints. In Proceedings of the 14th Annual International Conference on Mobile Systems, Applications and Services, Singapore, 25–30 June 2016; pp. 123–136. [Google Scholar]
- Variani, E.; Lei, X.; McDermott, E.; Moreno, I.L.; Gonzalez-Dominguez, J. Deep neural networks for small footprint textdependent speaker verification. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 4052–4056. [Google Scholar]
- Taylor, B.; Marco, V.S.; Wolff, W.; Elkhatib, Y.; Wang, Z. Adaptive selection of deep learning models on embedded systems. arXiv 2018, arXiv:1805.04252. [Google Scholar]
- Kang, Y.; Hauswald, J.; Gao, C.; Rovinski, A.; Mudge, T.; Mars, J.; Tang, L. Neurosurgeon: Collaborative intelligence between the cloud and mobile edge. ACM Sigarch Comput. Archit. News 2017, 45, 615–629. [Google Scholar] [CrossRef] [Green Version]
- Teerapittayanon, S.; McDanel, B.; Kung, H.-T. Distributed deep neural networks over the cloud, the edge and end devices. In Proceedings of the IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 328–339. [Google Scholar]
- Hu, C.; Bao, W.; Wang, D.; Liu, F. Dynamic Adaptive DNN Surgery for Inference Acceleration on the Edge. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; pp. 1423–1431. [Google Scholar]
- Jeong, H.-J.; Lee, H.-J.; Shin, C.H.; Moon, S.-M. Ionn: Incremental offloading of neural network computations from mobile devices to edge servers. In Proceedings of the ACM Symposium on Cloud Computing, Carlsbad, CA, USA, 10–13 October 2018; pp. 401–411. [Google Scholar]
- Wang, H.; Cai, G.; Huang, Z.; Dong, F. ADDA: Adaptive Distributed DNN Inference Acceleration in Edge Computing Environment. In Proceedings of the 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), Tianjin, China, 4–6 December 2019. [Google Scholar]
- Ren, P.; Qiao, X.; Huang, Y.; Liu, L.; Dustdar, S.; Chen, J. Edge-Assisted Distributed DNN Collaborative Computing Approach for Mobile Web Augmented Reality in 5G Networks. IEEE Netw. 2020, 34, 254–261. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, B.; Zheng, Y.; Hu, J.; Mo, Y.; Chen, X. Cost Efficient Offloading Strategy for DNN-Based Applications in Edge-Cloud Environment. In Proceedings of the IEEE International Conference on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking, Xiamen, China, 16–18 December 2019; pp. 331–337. [Google Scholar]
- Chen, Z.; Hu, J.; Chen, X.; Hu, J.; Zheng, X.; Min, G. Computation Offloading and Task Scheduling for DNN-Based Applications in Cloud-Edge Computing. IEEE Access 2020, 8, 115537–115547. [Google Scholar] [CrossRef]
- Boykov, Y.; Kolmogorov, V. An experimental comparison of mincut/max- flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1124–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Wey, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
Notation | Definition |
---|---|
the set of base stations | |
the time DNN query occurs | |
the time when the DNN job is completed | |
m | the number of time periods |
the set of time periods | |
n | the number of DNN layers |
a DNN layer | |
the set of DNN layer’s local processing time | |
the set of DNN layer’s edge processing time | |
the set of DNN layer’s output transfering time | |
the DNN execution profile generated by MDPO | |
the set of DNN layers whose output need be | |
transferred in network |
DNN Name | Number of Layers | DNN Topology |
---|---|---|
AlexNet | 24 | chain |
VGG | 42 | chain |
GoogLeNet | 152 | DAG |
ResNet | 245 | DAG |
MobileNet | 110 | DAG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, X.; Zhu, J.; Xu, T.; Li, Y. Mobility-Included DNN Partition Offloading from Mobile Devices to Edge Clouds. Sensors 2021, 21, 229. https://doi.org/10.3390/s21010229
Tian X, Zhu J, Xu T, Li Y. Mobility-Included DNN Partition Offloading from Mobile Devices to Edge Clouds. Sensors. 2021; 21(1):229. https://doi.org/10.3390/s21010229
Chicago/Turabian StyleTian, Xianzhong, Juan Zhu, Ting Xu, and Yanjun Li. 2021. "Mobility-Included DNN Partition Offloading from Mobile Devices to Edge Clouds" Sensors 21, no. 1: 229. https://doi.org/10.3390/s21010229
APA StyleTian, X., Zhu, J., Xu, T., & Li, Y. (2021). Mobility-Included DNN Partition Offloading from Mobile Devices to Edge Clouds. Sensors, 21(1), 229. https://doi.org/10.3390/s21010229