Revisiting Electrochemical Biosensing in the 21st Century Society for Inflammatory Cytokines Involved in Autoimmune, Neurodegenerative, Cardiac, Viral and Cancer Diseases
Abstract
:1. Introduction
2. Cytokines: Generalities, Classification, Function and Clinical Relevance
Inflammatory Cytokines: Relevance and Role in Neurological, Heart and Cancer Diseases
3. Conventional Methods for the Determination of Cytokines
4. Bioelectroanalytical Methods for the Determination of Inflammation-Related Cytokines
4.1. Magnetic Particles-Assisted Electrochemical Biosensing for the Determination of Inflammatory Cytokines
4.2. Integrated Biosensors Involving Surface Chemistries for the Determination of Inflammatory Cytokines
4.3. Electrochemical Biosensing Methods Involving Nanomaterials for the Determination of Inflammatory Cytokines
4.4. Electrochemical Biosensors with Antibiofouling Properties for the Determination of Inflammatory Cytokines
4.5. Other Electrochemical Biosensing Methods for the Determination of Inflammatory Cytokines
5. General Considerations, Challenges and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, P.; Huang, N.-T.; Chung, M.-T.; Cornell, T.T.; Kurabayashia, K. Label-free cytokine micro- and nano-biosensing towards personalized medicine of systemic inflammatory disorders. Adv. Drug Deliv. Rev. 2015, 95, 90–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Qi, M.; Hutchinson, M.R.; Yang, G.; Goldys, E.M. Recent advances in cytokine detection by immunosensing. Biosens. Bioelectron. 2016, 79, 810–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinarello, C.A. Historical Review of Cytokines. Eur. J. Immunol. 2007, 37, S34–S45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramesh, G.; MacLean, A.G.; Philipp, M.T. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediat. Inflamm. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kupsa, T.; Horacek, J.M.; Jebavy, L. The role of cytokines in acute myeloid leukemia: A systematic review. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech. Repub. 2012, 156, 291–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, N.; Moore, K.; Clark, R.; Perfetti, M.; Trent, C.; Combs, T. Do low levels of circulating adiponectin represent a biomarker or just another risk factor for the metabolic syndrome? Diabetes Obes. Metab. 2007, 9, 246–258. [Google Scholar] [CrossRef]
- Lackie, J. Cytokine. In A Dictionary of Biomedicine; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- “Cytokine” Stedman’s Medical Dictionary, 28th ed.; Wolters Kluwer Health; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006; ISBN 978-0-7817-6450-6.
- Liu, Y.; Zhou, Q.; Revzin, A. An aptasensor for electrochemical detection of tumor necrosis factor in human blood. Analyst 2013, 138, 4321–4326. [Google Scholar] [CrossRef]
- Kany, S.; Tilmann Vollrath, J.; Relja, B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019, 20, 6008. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, S.; Agüí, L.; Yáñez-Sedeño, P.; Pingarrón, J.M. Screen-printed Gold Electrodes Functionalized with Grafted p-Aminobenzoic Acid for the Construction of Electrochemical Immunosensors. Determination of TGF-β1 Cytokine in Human plasma. Electroanalysis 2018, 30, 1327–1335. [Google Scholar] [CrossRef]
- Mahečić, D.H.; Berković, M.C.; Zjačić-Rotkvić, V.; Čačev, T.; Kapitanović, S.; Ulamec, M. Inflammation-related cytokines and their roles in gastroenteropancreatic neuroendocrine neoplasms. Bosn. J. Basic Med. Sci. 2020, 20, 445–450. [Google Scholar]
- Baraket, A.; Leea, M.; Zinea, N.; Sigauda, M.; Bausells, J.; Errachida, A. A fully integrated electrochemical biosensor platform fabrication process for cytokines detection. Biosens. Bioelectron. 2017, 93, 170–175. [Google Scholar] [CrossRef]
- Bellagambi, F.G.; Baraket, A.; Longo, A.; Vatteroni, M.; Zine, N.; Bausells, J.; Fuoco, R.; Di Francesco, F.; Salvo, P.; Karanasiou, G.S.; et al. Electrochemical biosensor platform for TNF-α cytokines detection in both artificial and human saliva: Heart failure. Sens. Actuators B-Chem. 2017, 251, 1026–1033. [Google Scholar] [CrossRef]
- Burcu Aydın, E.; Aydın, M.; Sezgintürk, M.K. The development of an ultra-sensitive electrochemical immunosensor using a PPyr-NHS functionalized disposable ITO sheet for the detection of interleukin 6 in real human serums. N. J. Chem. 2020, 44, 14228–14238. [Google Scholar] [CrossRef]
- Vogiazi, V.; de la Cruz, A.; Mishra, S.; Shanov, V.; Heineman, W.R.; Dionysiou, D.D. A Comprehensive Review: Development of electrochemical biosensors for detection of cyanotoxins in freshwater. ACS Sens. 2019, 4, 1151–1173. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Zhou, Z.; Zhou, H.S. Review—Measurement and analysis of cancer biomarkers based on electrochemical biosensors. Electrochem. Soc. 2020, 167, 037525. [Google Scholar] [CrossRef]
- Loo, S.W.; Pui, T.-S. Cytokine and cancer biomarkers detection: The dawn of electrochemical paper-based biosensor. Sensors 2020, 20, 1854. [Google Scholar] [CrossRef] [Green Version]
- Russell, S.M.; Alba-Patiño, A.; Barón, E.; Borges, M.; Gonzalez-Freire, M.; de la Rica, R. Biosensors for managing the COVID-19 cytokine storm: Challenges ahead. ACS Sens. 2020, 5, 1506–1513. [Google Scholar] [CrossRef] [PubMed]
- Mazloum-Ardakani, M.; Hosseinzadeh, L.; Khoshroo, A. Ultrasensitive electrochemical immunosensor for detection of tumor necrosis factor-α based on functionalized MWCNT-gold nanoparticle/ionic liquid nanocomposite. Electroanalysis 2015, 27, 2518–2526. [Google Scholar] [CrossRef]
- Mazloum-Ardakani, M.; Hosseinzadeh, L. Highly-sensitive label-free immunosensor for tumor necrosis factor a based on Ag@Pt coreeshell nanoparticles supported on MW CNTs as an efficient electrocatalyst nanocomposite. RSC Adv. 2015, 5, 70781–70786. [Google Scholar] [CrossRef]
- Mazloum-Ardakani, M.; Hosseinzadeh, L.; Khoshroo, A. Label-free electrochemical immunosensor for detection of tumor necrosis factor α based on fullerene-functionalized carbon nanotubes/ionic liquid. J. Electroanal. Chem. 2015, 757, 58–64. [Google Scholar] [CrossRef]
- Say, R.; Özkütük, E.B.; Ünlüer, Ö.B.; Uğurağ, D.; Ersöz, A. Nano anti-tumor necrosis factor-alpha based potentiometric sensor for tumor necrosisfactor-alpha detection. Sens. Actuators B-Chem. 2015, 209, 864–869. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Matharu, Z.; Rahimian, A.; Revzin, A. Detecting multiple cell-secreted cytokines from the same aptamer-functionalized electrode. Biosens. Bioelectron. 2015, 64, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Krause, C.E.; Otieno, B.A.; Bishop, G.W.; Phadke, G.; Choquette, L.; Lalla, R.V.; Peterson, D.E.; Rusling, J.F. Ultrasensitive microfluidic array for serum proinflammatory cytokines and C-reactive protein to assess oral mucositis risk in cancer patients. Anal. Bioanal. Chem. 2015, 407, 7239–7243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eletxigerra, U.; Martinez-Perdiguero, J.; Merino, S. Disposable microfluidic immuno-biochip for rapid electrochemical detection of tumor necrosis factor alpha biomarker. Sens. Actuators B-Chem. 2015, 221, 1406–1411. [Google Scholar] [CrossRef]
- Ojeda, I.; Barrejón, M.; Arellano, L.M.; González-Cortés, A.; Yáñez-Sedeño, P.; Langa, F.; Pingarrón, J.M. Grafted-double walled carbon nanotubes as electrochemical platforms for immobilization of antibodies using a metallic-complex chelating polymer: Application to the determination of adiponectin cytokine in serum. Biosens. Bioelectron. 2015, 74, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Alam, M.T.; Silva, S.M.; Taufik, S.; Fan, S.; Gooding, J.J. Unique sensing interface that allows the development of an electrochemical immunosensor for the detection of tumor necrosis factor α in whole blood. ACS Sens. 2016, 1, 1432–1438. [Google Scholar] [CrossRef]
- Baydemir, G.; Bettazzi, F.; Palchetti, I.; Voccia, D. Strategies for the development of an electrochemical bioassay for TNF-alpha detection by using a nonimmunoglobulin bioreceptor. Talanta 2016, 151, 141–147. [Google Scholar] [CrossRef]
- Arenas, C.B.; Sánchez-Tirado, E.; Ojeda, I.; Gómez-Suárez, C.A.; González-Cortés, A.; Villalonga, R.; Yáñez-Sedeño, P.; Pingarrón, J.M. An electrochemical immunosensor for adiponectin using reduced graphene oxide–carboxymethylcellulose hybrid as electrode scaffold. Sens. Actuators B-Chem. 2016, 223, 89–94. [Google Scholar] [CrossRef]
- Torrente-Rodríguez, R.M.; Campuzano, S.; Ruiz-Valdepeñas Montiel, V.; Gamella, M.; Pingarrón, J.M. Electrochemical bioplatforms for the simultaneous determination of interleukin (IL)-8 mRNA and IL-8 protein oral cancer biomarkers in raw saliva. Biosens. Bioelectron. 2016, 77, 543–548. [Google Scholar] [CrossRef]
- Longo, A.; Baraket, A.; Vatteroni, M.; Zine, N.; Baussells, J.; Fuoco, R.; Di Francesco, F.; Karanasiou, G.S.; Fotiadis, D.I.; Menciassi, A.; et al. Highly sensitive electrochemical BioMEMS for TNF-α detection in human saliva: Heart failure. Procedia Eng. 2016, 168, 97–100. [Google Scholar] [CrossRef]
- Kumar, L.S.; Wang, X.; Hagen, J.; Naik, R.; Papautsky, I.; Heikenfeld, J. Label free nano-aptasensor for interleukin-6 in protein-dilute bio fluids such as sweat. Anal. Methods 2016, 8, 3440–3444. [Google Scholar] [CrossRef]
- Qi, M.; Zhang, Y.; Cao, C.; Zhang, M.; Liu, S.; Liu, G. Decoration of reduced graphene oxide nanosheets with aryldiazonium salts and gold nanoparticles toward a label-free amperometric immunosensor for detecting cytokine tumor necrosis factor-α in live cells. Anal. Chem. 2016, 88, 9614–9621. [Google Scholar] [CrossRef] [PubMed]
- Yagati, A.K.; Lee, G.-Y.; Ha, S.; Chang, K.-A.; Pyun, J.-C.; Cho, S. Impedimetric tumor necrosis factor-α sensor based on a reduced graphene oxide nanoparticle-modified electrode array. J. Nanosci. Nanotechnol. 2016, 16, 11921–11927. [Google Scholar] [CrossRef]
- Arya, S.K.; Kongsuphol, P.; Park, M.K. On-chip electrochemical immunoassay platform for specific protein biomarker estimation in undiluted serum using off-surface membrane matrix. Biosens. Bioelectron. 2017, 91, 721–727. [Google Scholar] [CrossRef]
- Tertiş, M.; Ciui, B.; Suciu, M.; Săndulescu, R.; Cristea, C. Label-free electrochemical aptasensor based on gold and polypyrrole nanoparticles for interleukin 6 detection. Electrochim. Acta 2017, 258, 1208–1218. [Google Scholar] [CrossRef]
- Miao, P.; Yang, D.; Chen, X.; Guo, Z.; Tang, Y. Voltammetric determination of tumor necrosis factor-α based on the use of an aptamer and magnetic nanoparticles loaded with gold nanoparticles. Microchim. Acta 2017, 184, 3901–3907. [Google Scholar] [CrossRef]
- Burcu Aydın, E.; Aydın, M.; Sezginturk, M.K. A highly sensitive immunosensor based on ITO thin films covered by a new semi-conductive conjugated polymer for the determination of TNFα in human saliva and serum samples. Biosens. Bioelectron. 2017, 97, 169–176. [Google Scholar] [CrossRef]
- Arya, S.K.; Estrela, P. Electrochemical immunosensor for tumor necrosis factor-alpha detection in undiluted serum. Methods 2017, 116, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Tirado, E.; González-Cortes, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Carbon nanotubes functionalized by click chemistry as scaffolds for the preparation of electrochemical immunosensors. Application to the determination of TGF-beta 1 cytokine. Analyst 2017, 141, 5730–5737. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Tirado, E.; Salvo, C.; González-Cortés, A.; Yáñez-Sedeño, P.; Langa, F.; Pingarrón, J.M. Electrochemical immunosensor for simultaneous determination of interleukin-1 beta and tumor necrosis factor alpha in serum and saliva using dual screen printed electrodes modified with functionalized double-walled carbon nanotubes. Anal. Chim. Acta 2017, 959, 66–73. [Google Scholar] [CrossRef]
- Sánchez-Tirado, E.; Arellano, L.M.; González-Cortés, A.; Yáñez-Sedeño, P.; Langa, F.; Pingarrón, J.M. Viologen-functionalized single-walled carbon nanotubes as carrier nanotags for electrochemical immunosensing. Application to TGF-β1 cytokine. Biosens. Bioelectron. 2017, 98, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Tirado, E.; Martínez-García, G.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical immunosensor for sensitive determination of transforming growth factor (TGF)-β1 in urine. Biosens. Bioelectron. 2017, 88, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Navarro, R.; Tapia-Galisteo, A.; Martín-García, L.; Tarín, C.; Corbacho, C.; Gómez-López, G.; Sánchez-Tirado, E.; Campuzano, S.; González-Cortés, A.; Yáñez-Sedeño, P.; et al. TGF-β-induced IGFBP-3 is a key paracrine factor from activated pericytes that promotes colorectal cancer cell migration and invasion. Mol. Oncol. 2020, 14, 2609–2628. [Google Scholar] [CrossRef] [PubMed]
- Barhoumi, L.; Baraket, A.; Bellagambi, F.G.; Karanasiou, G.S.; Ben Ali, M.; Fotiadis, D.I.; Bausells, J.; Zine, N.; Sigaud, M.; Errachid, A. A novel chronoamperometric immunosensor for rapid detection of TNF-α in human saliva. Sens. Actuators B-Chem. 2018, 266, 477–484. [Google Scholar] [CrossRef]
- Valverde, A.; Povedano, E.; Ruiz-Valdepeñas Montiel, V.; Yáñez-Sedeño, P.; Garranzo-Asensio, M.; Barderas, R.; Campuzano, S.; Pingarrón, J.M. Electrochemical immunosensor for IL-13 Receptor α2 determination and discrimination of metastatic colon cancer cells. Biosens. Bioelectron. 2018, 117, 766–772. [Google Scholar] [CrossRef]
- Liu, N.; Yi, H.; Lin, Y.; Zheng, H.; Zheng, X.; Lin, D.; Dai, H. Combined electrochemiluminescent and electrochemical immunoassay for interleukin 6 based on the use of TiO2 mesocrystal nanoarchitectures. Microchim. Acta 2018, 185, 277. [Google Scholar] [CrossRef]
- Metzner, J.; Luckert, K.; Lemuth, K.; Hämmerle, M.; Moos, R. Towards an electrochemical immunosensor system with temperature control for cytokine detection. Sensors 2018, 18, 1309. [Google Scholar] [CrossRef] [Green Version]
- Russell, C.; Ward, A.C.; Vezza, V.; Hoskisson, P.; Alcorn, D.; Steenson, D.P.; Corrigan, D.K. Development of a Needle Shaped Microelectrode for Electrochemical Detection of the Sepsis Biomarker Interleukin-6 (IL-6) in Real Time. Biosens. Bioelectron. 2019, 126, 806–814. [Google Scholar] [CrossRef]
- Barhoumi, L.; Bellagambi, F.G.; Vivaldi, F.M.; Baraket, A.; Clement, Y.; Zine, N.; Ben Ali, M.; Elaissari, A.; Errachid, A. Ultrasensitive immunosensor array for TNF-α detection in artificial saliva using polymer-coated magnetic microparticles onto screen-printed gold electrode. Sensors 2019, 19, 692. [Google Scholar] [CrossRef] [Green Version]
- Tertiş, M.; Leva, P.I.; Bogdan, D.; Suciu, M.; Graur, F.; Cristea, C. Impedimetric aptasensor for the label-free and selective detection of Interleukin-6 for colorectal cancer screening. Biosens. Bioelectron. 2019, 137, 123–132. [Google Scholar] [CrossRef]
- Tertiş, M.; Melinte, G.; Ciui, B.; Simon, I.; Stiufiuc, R.; Sandulescu, R.; Cristea, C. A Novel Label Free Electrochemical Magnetoimmunosensor for Human Interleukin-6 Quantification in Serum. Electroanalysis 2019, 31, 282–292. [Google Scholar]
- Serafín, V.; Valverde, A.; Martínez-García, G.; Martínez-Periñán, E.; Comba, F.; Garranzo-Asensio, M.; Barderas, R.; Yánez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Graphene quantum dots-functionalized multi-walled carbon nanotubes as nanocarriers in electrochemical immunosensing. Determination of IL-13 receptor α2 in colorectal cells and tumor tissues with different metastatic potential. Sens. Actuators B-Chem. 2019, 284, 711–722. [Google Scholar] [CrossRef]
- Serafín, V.; Valverde, A.; Garranzo-Asensio, M.; Barderas, R.; Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. Simultaneous amperometric immunosensing of the metastasis-related biomarkers IL-13Rα2 and CDH-17 by using grafted screen-printed electrodes and a composite prepared from quantum dots and carbon nanotubes for signal amplification. Microchim. Acta 2019, 186, 411. [Google Scholar] [CrossRef] [PubMed]
- Valverde, A.; ben Hassine, A.; Serafin, V.; Munoz-San Martin, C.; Pedrero, M.; Garranzo-Asensio, M.; Gamella, M.; Raouafi, N.; Barderas, R.; Yáñez-Sedeño, P.; et al. Dual Amperometric Immunosensor for Improving Cancer Metastasis Detection by the Simultaneous Determination of extracellular and soluble circulating fraction of emerging metastatic biomarkers. Electroanalysis 2020, 32, 706–714. [Google Scholar] [CrossRef]
- Guerrero, S.; Cadano, D.; Agüí, L.; Barderas, R.; Campuzano, S.; Yanez-Sedeño, P.; Pingarrón, J.M. Click chemistry-assisted antibodies immobilization for immunosensing of CXCL7 chemokine in serum. J. Electroanal. Chem. 2019, 837, 246–253. [Google Scholar] [CrossRef]
- Sánchez-Tirado, E.; González-Cortes, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical immunosensor for the determination of the cytokine interferon gamma (IFN-γ) in saliva. Talanta 2020, 211, 120761. [Google Scholar] [CrossRef]
- Guerrero, S.; Agüí, L.; Yáñez-Sedeño, P.; Pingarrón, J.M. Design of electrochemical immunosensors using electro-click chemistry. Application to the detection of IL-1β cytokine in saliva. Bioelectrochemistry 2020, 133, 107484. [Google Scholar] [CrossRef]
- Valverde, A.; Serafín, V.; Montero-Calle, A.; González-Cortés, A.; Barderas, R.; Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Carbon/inorganic hybrid nanoarchitectures as carriers for signaling elements in electrochemical immunosensors: First biosensor for the determination of the inflammatory and metastatic processes biomarker RANK-ligand. ChemElectroChem 2020, 7, 810–820. [Google Scholar] [CrossRef]
- Valverde, A.; Serafín, V.; Garoz, J.; Montero-Calle, A.; González-Cortes, A.; Arenas, M.; Camps, J.; Barderas, R.; Yáñez-Sedeño, P.; Campuzano, S.; et al. Electrochemical immunoplatform to improve the reliability of breast cancer diagnosis through the simultaneous determination of RANKL and TNF in serum. Sens. Actuators B-Chem. 2020, 314, 128096. [Google Scholar] [CrossRef]
- Burcu Bahadır, E.; Sezgintürk, M.K. A review on impedimetric biosensors. Artif. Cells Nanomed. Biotechnol. 2016, 44, 248–262. [Google Scholar] [CrossRef]
- Bertok, T.; Lorencova, L.; Chocholova, E.; Jane, E.; Vikartovska, A.; Kasak, P.; Tkac, J. Electrochemical impedance spectroscopy based biosensors: Mechanistic principles, analytical examples and challenges towards commercialization for assays of protein cancer biomarkers. ChemElectroChem 2019, 6, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Kudr, J.; Klejdus, B.; Adam, V.; Zitka, O. Magnetic solids in electrochemical analysis. Trends Anal. Chem. 2018, 98, 104–113. [Google Scholar] [CrossRef]
- Pastucha, M.; Farka, Z.; Lacina, K.; Mikŭsova, Z.; Skladal, P. Magnetic nanoparticles for smart electrochemical immunoassays: A review on recent developments. Microchim. Acta 2019, 186, 312. [Google Scholar] [CrossRef] [PubMed]
- Cortina, M.E.; Melli, L.J.; Roberti, M.; Mass, M.; Longinotti, G.; Tropea, S.; Lloret, P.; Rey Serantes, D.A.; Salomón, F.; Lloret, M.; et al. Electrochemical magnetic microbeads-based biosensor for point-of-care serodiagnosis of infectious diseases. Biosens. Bioelectron. 2016, 80, 24–33. [Google Scholar] [CrossRef]
- Brandão, D.; Liébana, S.; Campoy, S.; Alegret, S.; Pividori, M.I. Immunomagnetic separation of Salmonella with tailored magnetic micro and nanocarriers. A comparative study. Talanta 2015, 143, 198–204. [Google Scholar] [CrossRef]
- Serafín, V.; Torrente-Rodríguez, R.M.; Batlle, M.; de Frutos, P.G.; Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical immunosensor for receptor tyrosine kinase AXL using poly(pyrrolepropionic acid)-modified disposable electrodes. Sens. Actuators B-Chem. 2017, 240, 1251–1256. [Google Scholar] [CrossRef]
- Mincu, N.-B.; Lazar, V.; Stan, D.; Mihailescu, C.M.; Iosub, R.; Mateescu, A.L. Screen-printed electrodes (SPE) for in vitro diagnostic purpose. Diagnostics 2020, 10, 517. [Google Scholar] [CrossRef]
- Antuña-Jiménez, D.; González-García, M.B.; Hernández-Santos, D.; Fanjul-Bolado, P. Screen-Printed Electrodes Modified with Metal Nanoparticles for Small Molecule Sensing. Biosensors 2020, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Wang, G.; Hein, R.; Liu, N.; Luo, X.; Davis, J.J. Antifouling strategies for selective in vitro and in vivo sensing. Chem. Rev. 2020, 120, 3852–3889. [Google Scholar] [CrossRef]
- Hetemi, D.; Noël, V.; Pinson, J. Grafting of Diazonium Salts on Surfaces: Application to Biosensors. Biosensors 2020, 10, 4. [Google Scholar] [CrossRef] [Green Version]
- Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Integrated affinity biosensing platforms on screen-printed electrodes electrografted with diazonium salts. Sensors 2018, 18, 675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yáñez-Sedeño, P.; González-Cortés, A.; Campuzano, S.; Pingarrón, J.M. Copper(I)-catalyzed click chemistry as a tool for the functionalization of nanomaterials and the preparation of electrochemical (bio)sensors. Sensors 2019, 19, 2379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezinge, L.; Suea-Ngam, A.; deMello, A.J.; Shih, C.-J. Nanomaterials for molecular signal amplification in electrochemical nucleic acid biosensing: Recent advances and future prospects for point-of-care diagnostics. Mol. Syst. Des. Eng. 2020, 5, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, R.; Patel, V.; Vaque, J.P.; Gutkind, J.S.; Rusling, J.F. Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification. Anal. Chem. 2010, 82, 3118–3123. [Google Scholar] [CrossRef] [Green Version]
- Campuzano, S.; Pedrero, M.; Gamella, M.; Serafín, V.; Yáñez-Sedeño, P.; Pingarrón, J.M. Beyond sensitive and selective electrochemical biosensors: Towards continuous, real-time, antibiofouling and calibration-free devices. Sensors 2020, 20, 3376. [Google Scholar] [CrossRef]
Family | Functions | Examples |
---|---|---|
Cytokines | Pro-inflammatory; ↑ inflammatory mediators; ↑ innate immune responses | IL-1α, IL-1β, TNF-α, IL-12, IL-18, IL-23 |
Anti-inflammatory; ↓ inflammatory genes; ↓ cytokine-mediated lethality | IL-10, IL-13, TGF-β, IL-22, IL-1Ra, IFNα/β | |
Angiogenic; neovascularization; pro-metastatic | VEGF, IL-1, IL-6, IL-8 | |
Osteoclast activation | RANKL | |
Chemokines | ↑ Cellular emigration; ↑ cell activation | IL-8, MCP-1, MIP-1α, CC and CXC chemokines |
Interferons (IFNs) | Type I: anti-viral immunity; ↑ class I MHC; anti-inflammatory; anti-angiogenic | IFNα, IFNβ, IFNω |
Type II: macrophage activation; increase class II MHC IFNγ also ↑ class I MHC and is responsible for anti-viral immunity (stimulates CD8+ T cells/Th1 responses). | IFNγ | |
Adipokines | Pro-inflammatory; ↓ autoimmune disease pro-atherogenic | IL-1α, TNF-α, IL-6, leptin, adiponectin, resistin |
Tumor necrosis factors | Pro-inflammatory pyrogenic; non-specific immunity; apoptosis | TNF-α, TNF-β |
Mesenchymal growth factors | Fibrosis; pro-metastatic | FGF, HGF, TGF-β, BMP |
Colony stimulating factors | Hematopoiesis; pro and anti-inflammatory | IL-3, IL-7, G-CSF, GM-CSF, M-CSF |
Nerve growth factors | ↑ nerve/Schwann cells; B-cell activation | BNDF, NGF |
Electrode | Fundamentals | Detection Technique | Target Analyte/Disease | LR/LOD | Sample | Ref. |
---|---|---|---|---|---|---|
GCE | Sandwich-based immunosensor involving HRP-DAb at a GCE modified with an AuNP/MWCNT-AuNP nanocomposite/IL-CS composite film | DPV (H2O2 + acetaminophen) | TNF-α | 6.0–100 pg mL−1/2.0 pg mL−1 | Spiked human serum | [20] |
GSPE | Direct immunosensing at a graphite SPE modified with Ag@Pt-CNTs-CS | DPV (catechol) | TNF-α | 6.0–60 pg mL−1/1.6 pg mL−1 | Spiked human serum | [21] |
GSPE | Direct immunosensing at a graphite SPE prepared by entrapping the CAb onto a C60–CNTs–IL nanocomposite | DPV (catechol) | TNF-α | 5.0–75 pg mL−1/2.0 pg mL−1 | Spiked human serum | [22] |
ISE | Potentiometic sensor based on ruthenium-based antibodies nanoparticles | Potentiometry (Ru(III)/Ru(II)) | TNF-α/RA | 0.1–1.0 mg L−1/0.015 mg L−1 | Plasma | [23] |
Electrodes integrated into microfluidic devices | Direct aptasensing using aptamers labeled with AQ and MB | SWV (AQ + MB) | INF-γ + TNF-α | INF-γ: 9–130 ng mL−1/6.35 ng mL−1 TNF-α: 9–88/5.46 ng mL−1 | Dynamically monitoring of cytokine release from immune cells | [24] |
Array of eight SPCEs | Semiautomated, microfluidic immunoarray involving the use of Strep-MBs coated with Btn-DAb and Btn-HRP and an 8-sensor array coated with GSH-AuNP | Amperometry (HRP/H2O2/HQ) | TNF-α, IL-6, IL-1β, CRP/Cancer | IL-6: | Human serum from head and neck cancer patients | [25] |
Up to 4.5 pg mL−1/18 fg mL−1 | ||||||
TNF-α: | ||||||
Up to 12 pg mL−1/10 fg mL−1 | ||||||
CRP: | ||||||
Up to 11 pg mL−1/15 fg mL−1 | ||||||
IL-1β: | ||||||
Up to 22 pg mL−1/40 fg mL−1 | ||||||
SPdCE encapsulated with an all-disposable polymeric microfluidic cell | Sandwich-based immunosensor involving Btn-DAb and Strep-AP developed at p-ABA grafted SPdCE | DPV (AP/1-NP) | TNF-α | 13.7–50.0 ng mL−1/4.1 ng mL−1 | Real human serum | [26] |
SPCE | Sandwich-based immunosensor involving Btn-DAb and Strep-HRP at a SPCE modified with p-ABA-DWCNTs | Amperometry (HRP/H2O2/HQ) | APN | 0.05–10.0 μg mL−1/14.5 ng mL−1 | Human serum from healthy subjects | [27] |
ITO | Sandwich-based immunosensor involving HRP-DAb at an ITO electrode modified with mixed layers of PPC and PBA | Chronoamperometry (HRP/H2O2/Ferrocenemethanol | TNF-α | 0.01–500 ng mL−1/10 pg mL−1 | Non-pretreated whole blood | [28] |
SPCE | Sandwich type bioassay implemented on the surface of HOOC-MBs using and affibody as capture bioreceptor a DAb and an AP-anti-mouse IgG | DPV (AP/1-NPP) | TNF-α | --/0.038 ng mL−1 | Spiked commercial human serum | [29] |
SPCE | A sandwich-type immunoassay involving the commercial metal complexes-based polymer Mix&GoTM for the stable and oriented immobilization of CAb at CMC–rGO/SPCEs and | Amperometry (HRP/H2O2/HQ) | APN | 0.5–10.0 μg mL−1/61 ng mL−1 | Human serum from hypercholesterolemia or diabetes patients | [30] |
SPdCE | Direct hybridization assay using a Btn-hairpin DNA Cp and sandwich immunoassay involving Btn-DAb and Strep-HRP implemented on the surface of Strep-MBs and HOOC-MBs | Amperometry (HRP/H2O2/HQ) | IL-8 mRNA + IL-8 protein | IL-8 mRNA: 0.32–7.5 nM/0.10 nM IL-8: 87.9–5000 pg mL−1/26.4 pg mL−1 | Raw human saliva | [31] |
Eight Au working microelectrodes | Direct immunosensing at CMA-modified Au microelectrodes | EIS ([Fe(CN)6]4−/3−] | TNF-α/HF | 1–15 pg mL−1/-- | Artificial saliva | [32] |
AuE | Direct aptasensing at a thiolated aptamer-modified AuNPs-AuE | EIS ([Fe(CN)6]4−/3−] | IL-6 | 0.02 pg mL−1–20 pg mL−1/-- | Spiked artificial sweat | [33] |
AuE | Sandwich-based immunosensor involving the use of Au-RGO-ph-AuNP-ph-PPC(-ph-COOH) as electrode modifiers and DAb-GO-ph-Fc as tracers | SWV (Fc) | TNF-α | 0.1−150 pg mL−1/0.1 pg mL−1 | Live BV-2 cells secretions | [34] |
ITO microelectrode array | Direct immunosensing at ITO microelectrode array nanostructured with AuNP-rGO hybrids | EIS ([Fe(CN)6]4−/3−] | TNF-α | 1–1000 pg mL−1/0.43 pg mL−1 | -- | [35] |
Array of micro fingers of gold | Sandwich immunosensor involving Btn-DAb and Strep-AP and covalent attachment of CAb on 2D PC membrane based off-matrix achieved FNAB cross-linker | DPV (4-APP) | TNF-α | 100 pg mL−1–100 ng mL−1/100 pg mL−1 | Undiluted serum | [36] |
SPGE | Direct aptasensing at a AuNPs/ PPyNPs/SPGE | EIS ([Fe(CN)6]4−/3−] | IL-6 | 1 pg mL−1–15 μg mL−1/0.33 pg mL−1 | Spiked human serum | [37] |
GCE | Direct aptasensing approach at Fe3O4@AuNP modified with an SH probe hybridized with a MB-labeled aptameric probe | SWV (MB) | TNF-α | 10 pg mL−1–100 ng mL−1/10 pg mL−1 | Spiked human serum | [38] |
ITO | Direct immunosensing at a Poly(3-thiophene acetic acid)-modified ITO | EIS ([Fe(CN)6]4−/3−] | TNF-α | 0.01 pg mL−1–2 pg mL−1/3.7 fg mL−1 | Human saliva and serum | [39] |
Comb-shaped gold electrode microarray | Sandwich-based immunosensor involving Btn-DAb and Strep-AP at a DTSP/Au electrodes | DPV (4-APP) | TNF-α | 500 pg mL−1–100 ng mL−1/60 pg mL−1 | Spiked undiluted serum | [40] |
MWCNTs-SPCE | Sandwich-based immunosensor involving Btn-DAb and Strep-HRP and click chemistry-assisted cAb immobilization on IgG-alkyne-azide-MWCNTs conjugates | Amperometry (HRP/H2O2/HQ) | TGF-β1 | 5–200 pg mL−1/1.3 pg mL−1 | Spiked commercial human serum | [41] |
SPdCE | A sandwich-type immunoassay involving Btn-DAb and Strep-HRP and the commercial polymeric coating Mix&Go™ for the stable and oriented immobilization of CAb at HOOC-Phe-DWCNTs/SPCEs | Amperometry (HRP/H2O2/HQ) | IL-1β + TNF-α | IL-1β: 0.5–100 pg mL−1/0.38 pg mL−1 TNF-α: 1–200 pg mL−1/0.85 pg mL−1 | Spiked commercial human serum and real saliva | [42] |
SPCE | Sandwich type immunosensor prepared by immobilizing Btn-cAb onto p-ABA-functionalized SPCEs modified with streptavidin and using V-Phe-SWCNT hybrids as nanocarriers of HRP and DAb for amplification purposes | Amperometry (HRP/H2O2/HQ) | TGF-β1 | 2.5–1000 pg mL−1/0.95 pg mL−1 | Real human saliva | [43] |
SPCE | Sandwich type immunosensor implemented on the surface of HOOC-MBs using Btn-DAb and Strep-AP and Mix&Go polymer for cAb immobilization | Amperometry (HRP/H2O2/HQ) | TGF-β1 | 15–3000 pg mL−1/10 pg mL−1 | Spiked human urine and cells supernatants | [44,45] |
Au working microelectrodes | Direct immunosensing at CMA-modified Au microelectrodes | EIS ([Fe(CN)6]4−/3−] | IL-1β + IL-10 | 1 pg mL−1–15 pg mL−1 | - | [13] |
Au working microelectrodes | Direct immunosensing at CMA-modified Au microelectrodes | EIS ([Fe(CN)6]4−/3−] | TNF-α | 1–100 pg mL−1/3.1 pg mL−1 | Human saliva | [14] |
Au WE | Sandwich immunosensing using HRP-DAb at CMA-modified Au microelectrodes | Chronoamperometry (HRP/H2O2/TMB) | TNF-α | 1 pg mL−1–30 pg mL−1/1 pg mL−1 | Human saliva | [46] |
SPCE | Sandwich type immunoassay using Btn-DAb and Strep-HRP implemented on the surface of HOOC-MBs | Amperometry (HRP/H2O2/HQ) | IL-13Rα2/Cancer | 3.9–100 ng mL−1/1.2 ng mL−1 | Lysed and whole cancer cells | [47] |
GCE | Sandwich immunosensor prepared at a GCE modified with an AMCs-CTIL composite and using ACP-modified OAMs as nanocarriers of HRP-DAb | ECL and DPV (1-NPP/ACP/HRP) dual detection | IL-6 | 10 fg mL−1–90 ng mL−1/0.32 fg mL−1 | -- | [48] |
SWCNT-WE | Sandwich immunosensor involving Btn-DAb and Strep-HRP | Amperometry (HRP/H2O2/HQ) | IL-13 | Up to 25 ng mL−1/5.4 ng mL−1 | -- | [49] |
Au/SPE | Sandwich-based immunosensor involving Btn-DAb and Strep-AP at p-ABA grafted Au/SPE | DPV (AP/1-NPP) | TGF-β1 | 0.05–3.0 ng mL−1/10 pg mL−1 | Spiked commercial human plasma | [11] |
Arrays of eight Au microelectrodes fabricated onto needle shaped silicon substrates | Direct immunosensing at Au microelectrodes modified with Sulfo-LC-SPDP and CAb | EIS and DPV ([Fe(CN)6]4−/3−] | IL-6 | --/0.95 pM | Spiked human serum | [50] |
Eight Au-SPEs array | Sandwich immunoassays involving HRP-DAb implemented at CMA-Au-SPEs (2D-SPEAu) or Py/Py-COOH/MNPs electrodeposited onto Au-SPEs (3D-SPEAu) | Chronoamperometry (HRP/H2O2/TMB) | TNF-α | 2D-SPEAu and 3D-SPEAu: Up to 15 pg mL−1/0.3 pg mL−1 | Artificial saliva | [51] |
GCE | Direct aptasensing at a GCE modified with p-ABA, p-ATP and AuNPs | EIS ([Fe(CN)6]4−/3−] | IL-6/Cancer | 5 pg mL−1–100 ng mL−1/1.6 pg mL−1 | Blood from CRC patients | [52] |
GSPE | Direct immunoassay implemented on the surface of ProtG-MBs | EIS ([Fe(CN)6]4−/3−] | IL-6 | 1 pg mL−1–1 μg mL−1/0.3 pg mL−1 | Spiked human serum | [53] |
SPCE | Sandwich immunosensor involving the immobilization of a Btn-CAb onto Strep- modified SPCEs through grafting with p-ABA and the use of GQDs/MWCNTs as nanocarrier DAb and HRP molecules | Amperometry (HRP/H2O2/HQ) | IL-13Rα2/Cancer | 2.7–100 ng mL−1/0.8 ng mL−1 | Cellular lysates and extracts of paraffin-embedded tissues from patients diagnosed with colorectal cancer | [54] |
SPdCE | Sandwich immunosensors involving the immobilization CAbs onto p-ABA-grafted SPCEs and the use of GQDs/MWCNTs as nanocarriers DAb and HRP molecules | Amperometry (HRP/H2O2/HQ) | IL-13Rα2 + CDH-17/Cancer | IL-13Rα2: 4.92–100 ng mL−1/1.4 ng mL−1; CDH-17: 0.11–10 ng mL−1/0.03 ng mL−1 | Lysed and whole cancer cells | [55] |
SPdCE | Sandwich type immunoassays using Btn-DAb and Strep-HRP implemented on the surface of HOOC-MBs | Amperometry (HRP/H2O2/HQ) | IL-13Rα2 + E-CDH/Cancer | IL-13Rα2: 3.4–100 ng mL−1/1.03 ng mL−1; E-CDH: 0.9–25 ng mL−1/0.26 ng mL−1 | Soluble and extracellular fraction of the target biomarkers in serum and paraffined-embedded tissues from CRC patients | [56] |
SPCE | Sandwich-based immunosensor involving Btn-DAb and Strep-AP and click chemistry-assisted cAb immobilization by reaction of azide-functionalized MWCNTs and ethynyl-IgG | DPV (AP/1-NPP) | CXCL7/Inflammatory | 0.5–600 pg mL−1/0.1 pg mL−1 | Human sera from RA patients | [57] |
SPCE | Sandwich-based immunosensor involving Btn-DAb and Strep-HRP at a p-ABA grafted SPCE | Amperometry (HRP/H2O2/HQ) | IFN-γ | 2.5–2000 pg mL−1/1.6 pg mL−1 | International Standard and human saliva | [58] |
SPCE | Sandwich-based immunosensor involving Btn-DAb and Strep-AP and cAb immobilization onto ethynylated IgG attached to azide-MWCNTs modified electrodes by Cu(I) catalyzed-cycloaddition reaction (electroclick) | DPV (AP/1-NPP) | IL-1β | 10–200 pg mL−1 and 200–1200 pg mL−1/5.2 pg mL−1 | Spiked human saliva | [59] |
ITO | Direct immunosensor at a PPyr-NHS-modified ITO | EIS ([Fe(CN)6]4−/3−] | IL-6 | 0.03 pg mL−1–22.5 pg mL−1/10.2 fg mL−1 | Human serum | [15] |
SPCE | Sandwich immunosensor involving the immobilization CAbs onto p-ABA-grafted SPCEs and the use of AuNPs/MWCNTs as nanocarriers DAb and HRP molecules | Amperometry (HRP/H2O2/HQ) | RANKL/Inflammatory + Cancer | 10.4–1000 pg mL−1/ 3.1 pg mL−1 | Human serum from RA and CRC patients | [60] |
SPdCE | Sandwich immunosensors involving the immobilization CAbs onto p-ABA-grafted SPCEs and the use of AuNPs/MWCNTs as nanocarriers DAb and HRP | Amperometry (HRP/H2O2/HQ) | RANKL + TNF-α/Cancer | RANKL: 8.6–1000 pg mL−1/2.6 pg mL−1 TNFα: 9.9–1000 pg mL−1/3.0 pg mL−1 | Human serum from BC patients | [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. Revisiting Electrochemical Biosensing in the 21st Century Society for Inflammatory Cytokines Involved in Autoimmune, Neurodegenerative, Cardiac, Viral and Cancer Diseases. Sensors 2021, 21, 189. https://doi.org/10.3390/s21010189
Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Revisiting Electrochemical Biosensing in the 21st Century Society for Inflammatory Cytokines Involved in Autoimmune, Neurodegenerative, Cardiac, Viral and Cancer Diseases. Sensors. 2021; 21(1):189. https://doi.org/10.3390/s21010189
Chicago/Turabian StyleCampuzano, Susana, Paloma Yáñez-Sedeño, and José Manuel Pingarrón. 2021. "Revisiting Electrochemical Biosensing in the 21st Century Society for Inflammatory Cytokines Involved in Autoimmune, Neurodegenerative, Cardiac, Viral and Cancer Diseases" Sensors 21, no. 1: 189. https://doi.org/10.3390/s21010189
APA StyleCampuzano, S., Yáñez-Sedeño, P., & Pingarrón, J. M. (2021). Revisiting Electrochemical Biosensing in the 21st Century Society for Inflammatory Cytokines Involved in Autoimmune, Neurodegenerative, Cardiac, Viral and Cancer Diseases. Sensors, 21(1), 189. https://doi.org/10.3390/s21010189