Investigation on Surface Tilting in the Failure Process of Shallow Landslides
Abstract
:1. Introduction
2. Proposed Equipment for Slope Monitoring
3. Methodology
3.1. Laboratory Model Tests
3.1.1. Small-Scaled Model Tests Using Tilt Sensors without Rods
3.1.2. Small-Scaled Model Tests Using Tilt Sensors with Short Rods
3.1.3. Small-Scaled Model Tests Using Tilt Sensors with Long Rods Reaching the Slip Surface
3.2. Field Tests
4. Results and Discussion
4.1. Model Tests
4.1.1. Small-Scale Model Tests Using Tilt Sensors without Rods
4.1.2. Small-Scale Model Tests Using Tilt Sensors with Short Rods
4.1.3. Small-Scale Model Tests Using Tilt Sensors with Long Rods Reaching the Slip Surface
4.2. Field Tests
4.3. Discussion
4.4. Limitations and Future Scope
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Keefer, D.K.; Wilson, R.C.; Mark, R.K.; Brabb, M.E.; Brown, W.M., III; Ellen, S.D.; Harp, E.L.; Wieczorek, G.F.; Alger, C.S.; Zatkin, R.S. Real-time landslide warning during heavy rainfall. Science 1987, 238, 921–925. [Google Scholar] [CrossRef]
- Okada, K. Soil Water Index Sokko-Jiho; Japan Meteorological Agency: Tokyo, Japan, 2001; pp. 69–567. [Google Scholar]
- Kuramoto, K.; Noro, T.; Osanai, N.; Kobayashi, M.; Okada, K. A study on rainfall indexes for giving early warning information for sediment-related disasters. In Proceedings of the Annual Research Meeting, Minneapolis, MN, USA, 12 June 2005; pp. 186–187. [Google Scholar]
- Osanai, N.; Shimizu, T.; Kuramoto, K.; Kojima, S.; Noro, T. Japanese early-warning for debris flows and slope failures using rainfall indices with Radial Basis Function Network. Landslides 2010, 7, 325–338. [Google Scholar] [CrossRef]
- Ishihara, Y.; Kobatake, S. Runoff Model for Flood Forecasting. Available online: https://core.ac.uk/reader/39254740 (accessed on 28 April 2020).
- Dixon, N.; Smith, A.; Flint, J.A.; Khanna, R.; Clark, B.; Andjelkovic, M. An acoustic emission landslide early warning system for communities in low-income and middle-income countries. Landslides 2018, 15, 1631–1644. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Yuan, H.; Chen, J.; Sun, Z.; Fu, M.; Zhou, Y.; Yan, S.; Zhang, Z.; Chen, T. Experimental investigation on progressive deformation of soil slope using acoustic emission monitoring. Eeg. Geol. 2019, 261, 105295. [Google Scholar] [CrossRef]
- Koerner, R.M.; McCabe, W.M.; Lord, A.E. Acoustic emission behavior and monitoring of soils. In Acoustic Emissions in Geotechnical Engineering Practice; ASTM International: West Conshohocken, PA, USA, 1981. [Google Scholar]
- Rouse, C.; Styles, P.; Wilson, S.A. Microseismic emissions from flowslide-type movements in South Wales. Eeg. Geol. 1991, 31, 91–110. [Google Scholar] [CrossRef]
- Smith, A.; Dixon, N.; Meldrum, P.; Haslam, E.; Chambers, J. Acoustic emission monitoring of a soil slope: Comparisons with continuous deformation measurements. Geotech. Lett. 2014, 4, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Irfan, M.; Uchimura, T.; Cheng, G.; Nie, W. Elastic wave velocity monitoring as an emerging technique for rainfall-induced landslide prediction. Landslides 2018, 15, 1155–1172. [Google Scholar] [CrossRef]
- Angeli, M.G.; Pasuto, A.; Silvano, S. A critical review of landslide monitoring experiences. Eeg. Geol. 2000, 55, 133–147. [Google Scholar] [CrossRef]
- Intrieri, E.; Gigli, G.; Mugnai, F.; Fanti, R.; Casagli, N. Design and implementation of a landslide early warning system. Eeg. Geol. 2012, 147, 124–136. [Google Scholar] [CrossRef] [Green Version]
- Carlà, T.; Intrieri, E.; Di Traglia, F.; Nolesini, T.; Gigli, G.; Casagli, N. Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses. Landslides 2017, 14, 517–534. [Google Scholar] [CrossRef] [Green Version]
- Ferrigno, F.; Gigli, G.; Fanti, R.; Intrieri, E.; Casagli, N. GB-InSAR monitoring and observational method for landslide emergency management: The Montaguto earthflow (AV, Italy). Nat. Hazards Earth Syst. 2017, 17, 845–860. [Google Scholar] [CrossRef] [Green Version]
- Kamai, T. Monitoring the process of ground failure in repeated landslides and associated stability assessments. Eeg. Geol. 1998, 50, 71–84. [Google Scholar] [CrossRef]
- Corominas, J.; Moya, J.; Lloret, A.; Gili, J.A.; Angeli, M.G.; Pasuto, A.; Silvano, S. Measurement of landslide displacements using a wire extensometer. Eng. Geol. 2000, 55, 149–166. [Google Scholar] [CrossRef]
- Stiros, S.C.; Vichas, C.; Skourtis, C. Landslide monitoring based on geodetically derived distance changes. J. Surv. Eng. 2004, 130, 156–162. [Google Scholar] [CrossRef]
- Petley, D.N.; Mantovani, F.; Bulmer, M.H.; Zannoni, A. The use of surface monitoring data for the interpretation of landslide movement patterns. Geomorphology 2005, 66, 133–147. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, M.; Sun, M.; Huang, K.; Song, Y. Deformation characteristics and failure mode of the Zhujiadian landslide in the Three Gorges Reservoir, China. B Eng. Geol. Environ. 2015, 74, 1–12. [Google Scholar] [CrossRef]
- Chung, M.C.; Tan, C.H.; Chen, C.H. Local rainfall thresholds for forecasting landslide occurrence: Taipingshan landslide triggered by Typhoon Saola. Landslides 2017, 14, 19–33. [Google Scholar] [CrossRef]
- Thapa, P.S.; Adhikari, B.R. Development of community-based landslide early warning system in the earthquake-affected areas of Nepal Himalaya. J. Mt. Sci. 2019, 16, 2701–2713. [Google Scholar] [CrossRef]
- Saito, M. Forecasting time of slope failure by tertiary creep. In Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, Mexico, 29 August 1969; pp. 677–683. [Google Scholar]
- Saito, M. On application of creep curves to forecast the time of slope failure. Landslides 1987, 24, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Fukuzono, T. A new method for predicting the failure time of a slope. In Proceedings of the 4th International Conference and Field Workshop on Landslide, Tokyo, Japen, 23–31 August 1985. [Google Scholar]
- Voight, B. A method for prediction of volcanic eruptions. Nature 1988, 332, 125–130. [Google Scholar] [CrossRef]
- Voight, B. A relation to describe rate-dependent material failure. Science 1989, 243, 200–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petley, D.N.; Bulmer, M.H.; Murphy, W. Patterns of movement in rotational and translational landslides. Geology 2002, 30, 719–722. [Google Scholar] [CrossRef]
- Uchimura, T.; Towhata, I.; Wang, L.; Nishie, S.; Yamaguchi, H.; Seko, I.; Qiao, J. Precaution and early warning of surface failure of slopes using tilt sensors. Soils Found. 2015, 55, 1086–1099. [Google Scholar] [CrossRef] [Green Version]
- Smethurst, J.A.; Smith, A.; Uhlemann, S.; Wooff, C.; Chambers, J.; Hughes, P.; Lenart, S.; Saroglou, H.; Springman, S.M.; Löfroth, H.; et al. Current and future role of instrumentation and monitoring in the performance of transport infrastructure slopes. Q. J. Eng. Geol. Hydrogeol. 2017, 50, 271–286. [Google Scholar] [CrossRef] [Green Version]
- Ćmielewski, B.; Kontny, B.; Ćmielewski, K. Use of low-cost MEMS technology in early warning system against landslide threats. Acta Geodyn. Geomater. 2013, 10, 172. [Google Scholar] [CrossRef]
- Tran, D.T.; Nguyen, D.C.; Tran, D.N.; Ta, D.T. Development of a rainfall-triggered landslide system using wireless accelerometer network. IJACT 2015, 7, 14. [Google Scholar]
- Tu, R.; Wang, R.; Ge, M.; Walter, T.R.; Ramatschi, M.; Milkereit, C.; Bindi, D.; Dahm, T. Cost-effective monitoring of ground motion related to earthquakes, landslides, or volcanic activity by joint use of a single-frequency GPS and a MEMS accelerometer. Geophys. Res. Lett. 2013, 40, 3825–3829. [Google Scholar] [CrossRef] [Green Version]
- de Dios, R.J.C.; Enriquez, J.; Victorino, F.G.; Mendoza, E.A.; Talampas, M.C.; Marciano, J.J. Design, development, and evaluation of a tilt and soil moisture sensor network for slope monitoring applications. In Proceedings of the TENCON 2009–2009 IEEE Region 10 Conference, Singapore, 23–26 January 2009. [Google Scholar]
- Marciano, J.S., Jr.; Zarco, M.A.H.; Talampas, M.C.R.; Catane, S.G.; Hilario, C.G.; Zabanal, M.A.B.; Carreon, C.R.C.; Mendoza, E.A.; Kaimo, R.N.; Cordero, C.N. Real-world deployment of a locally-developed tilt and moisture sensor for landslide monitoring in the Philippines. In Proceedings of the 2011 IEEE Global Humanitarian Technology Conference, Seattle, WA, USA, 30 October–1 November 2011. [Google Scholar]
- Yang, Z.; Shao, W.; Qiao, J.; Huang, D.; Tian, H.; Lei, X.; Uchimura, T. A Multi-Source Early Warning System of MEMS Based Wireless Monitoring for Rainfall-Induced Landslides. Appl. Sci. 2017, 7, 1234. [Google Scholar] [CrossRef] [Green Version]
- Dikshit, A.; Satyam, D.N.; Towhata, I. Early warning system using tilt sensors in Chibo, Kalimpong, Darjeeling Himalayas, India. Nat. Hazards 2018, 94, 727–741. [Google Scholar] [CrossRef]
- Towhata, I.; Uchimura, T.; Gallage, C. On early detection and warning against rainfall-induced landslides (m129); Springer: Berlin/Heidelberg, Germany, 2005; pp. 133–139. [Google Scholar]
- Uchimura, T.; Towhata, I.; Wang, L.; Seko, I. Development of low-cost early warning system of slope instability for civilian use. In Proceedings of the 17th ISSMGE, Alexandria, Egypt, 5–9 October 2009. [Google Scholar]
- Uchimura, T.; Towhata, I.; Anh, T.T.L.; Fukuda, J.; Bautista, C.J.; Wang, L.; Seko, I.; Uchida, T.; Matsuoka, A.; Ito, Y.; et al. Simple monitoring method for precaution of landslides watching tilting and water contents on slopes surface. Landslides 2010, 7, 351–357. [Google Scholar] [CrossRef]
- Xie, J.; Uchimura, T.; Chen, P.; Liu, J.; Xie, C.; Shen, Q. A relationship between displacement and tilting angle of the slope surface in shallow landslides. Landslides 2019, 16, 1243–1251. [Google Scholar] [CrossRef]
- Xie, J.; Uchimura, T.; Wang, G.; Shen, Q.; Maqsood, Z.; Xie, C.; Liu, J.; Lei, W.; Tao, S.; Chen, P.; et al. A new prediction method for the occurrence of landslides based on the time history of tilting of the slope surface. Landslides 2020, 17, 301–312. [Google Scholar] [CrossRef]
- Xie, J.; Uchimura, T.; Wang, G.; Selvarajah, H.; Maqsood, Z.; Shen, Q.; Mei, G.; Qiao, S. Predicting the sliding behavior of rotational landslides based on the tilting measurement of the slope surface. Eng. Geol. 2020, 269, 105554. [Google Scholar] [CrossRef]
- Iverson, R.M.; Reid, M.E.; Iverson, N.R.; LaHusen, R.G.; Logan, M.; Mann, J.E.; Brien, D.L. Acute sensitivity of landslide rates to initial soil porosity. Science 2000, 290, 513–516. [Google Scholar] [CrossRef] [Green Version]
- Carter, M.; Bentley, S.P. The geometry of slip surfaces beneath landslides: Predictions from surface measurements. Can. Geotech. J. 1985, 22, 234–238. [Google Scholar] [CrossRef]
- Carter, M.; Bentley, S.P. A procedure to locate slip surfaces beneath active landslides using surface monitoring data. Comput. Geotech. 1985, 1, 139–153. [Google Scholar] [CrossRef]
- Ulusay, R.; Aksoy, H. Assessment of the failure mechanism of a highwall slope under spoil pile loadings at a coal mine. Eng. Geol. 1994, 38, 117–134. [Google Scholar] [CrossRef]
- Baum, R.L.; Messerich, J.; Fleming, R.W. Surface deformation as a guide to kinematics and three-dimensional shape of slow-moving, clay-rich landslides, Honolulu, Hawaii. Environ. Eng. Geosci. 1998, 4, 283–306. [Google Scholar] [CrossRef]
- Michel, J.; Dario, C.; Marc-Henri, D.; Thierry, O.; Marina, P.I.; Bejamin, R. A review of methods used to estimate initial landslide failure surface depths and volumes. Eng. Geol. 2020, 105478. [Google Scholar] [CrossRef]
Test No. | Material | Radius of the Slip Surface R or R1 + R2 (mm) | Triggering Factor | Base Layer Density (g/cm3) | Surface Layer Density (g/cm3) | Depth (mm) |
---|---|---|---|---|---|---|
1 | Silica sand #7 | R: 600 | Lifting | 1.60 | 1.25 | 137 |
2 | Silica sand #7 | R: 1000 | Lifting | 1.60 | 1.32 | 75 |
3 | Silica sand #7 | R: 600 | Lifting | 1.60 | 1.32 | 137 |
4 | Edosaki sand | R: 600 | Lifting | 1.70 | 1.25 | 137 |
5 | Silica sand #7 | R1 + R2: 600 + 400 | Lifting | 1.60 | 1.32 | 138 |
6 | Edosaki sand | R1 + R2: 600 + 400 | Lifting | 1.60 | 1.25 | 138 |
7 | Silica sand #7 | R1 + R2: 300 + 800 | Lifting | 1.60 | 1.32 | 155 |
8 | Silica sand #7 | R1 + R2: 300 + 800 | Rainfall | 1.60 | 1.32 | 155 |
9 | Edosaki sand | R: 600 | Rainfall | 1.70 | 1.25 | 137 |
10 | Silica sand #7 | Infinite (planar) | Lifting | / | 1.32 | / |
Test No. | Material | Radius of the Slip Surface (mm) | Triggering Factor | Base Layer Density (g/cm3) | Surface Layer Density (g/cm3) | Depth (mm) | Rod Length (mm) |
---|---|---|---|---|---|---|---|
11 | Edosaki sand | R: 600 | Lifting | 1.60 | 1.25 | 137 | 70 |
12 | Silica sand #7 | R1 + R2: 300 + 800 | Lifting | 1.60 | 1.32 | 155 | 70 |
13 | Silica sand #7 | R1 + R2: 300 + 800 | Lifting | 1.60 | 1.32 | 155 | 55 |
14 | Silica sand #7 | R1 + R2: 300 + 800 | Rainfall | 1.60 | 1.32 | 155 | 70 |
15 | Silica sand #7 | R1 + R2: 300 + 800 | Lifting | 1.60 | 1.32 | 155 | 70 and 0 |
Test No. | Material | Radius of the Slip Surface (mm) | Triggering Factor | Base Layer Density (g/cm3) | Surface Layer Density (g/cm3) | Depth (mm) | Rod Lengths (mm) |
---|---|---|---|---|---|---|---|
16 | Silica sand #7 | R1 + R2: 300 + 800 | Lifting | 1.60 | 1.32 | 155 | 180 |
17 | Silica sand #7 | R1 + R2: 300 + 800 | Rainfall | 1.60 | 1.32 | 155 | 180 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, S.; Feng, C.; Yu, P.; Tan, J.; Uchimura, T.; Wang, L.; Tang, J.; Shen, Q.; Xie, J. Investigation on Surface Tilting in the Failure Process of Shallow Landslides. Sensors 2020, 20, 2662. https://doi.org/10.3390/s20092662
Qiao S, Feng C, Yu P, Tan J, Uchimura T, Wang L, Tang J, Shen Q, Xie J. Investigation on Surface Tilting in the Failure Process of Shallow Landslides. Sensors. 2020; 20(9):2662. https://doi.org/10.3390/s20092662
Chicago/Turabian StyleQiao, Shifan, Chaobo Feng, Pengkun Yu, Junkun Tan, Taro Uchimura, Lin Wang, Junfeng Tang, Quan Shen, and Jiren Xie. 2020. "Investigation on Surface Tilting in the Failure Process of Shallow Landslides" Sensors 20, no. 9: 2662. https://doi.org/10.3390/s20092662
APA StyleQiao, S., Feng, C., Yu, P., Tan, J., Uchimura, T., Wang, L., Tang, J., Shen, Q., & Xie, J. (2020). Investigation on Surface Tilting in the Failure Process of Shallow Landslides. Sensors, 20(9), 2662. https://doi.org/10.3390/s20092662