Distributed Robust Filtering for Wireless Sensor Networks with Markov Switching Topologies and Deception Attacks
Abstract
:1. Introduction
1.1. Related Work
1.2. Main Contribution
2. Problem Statement
2.1. Preliminaries
2.2. System Model
2.3. Augmented Filtering Error System Model
3. Distributed Filtering Performance Analysis
4. Distributed - Filter Design
5. Simulation Example
6. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stergiou, C.; Psannis, K.E.; Plageras, A.P.; Ishibashi, Y.; Kim, B.-G. Algorithms for efficient digital media transmission over IoT and cloud networking. J. Multimed. Inf. Syst. 2018, 5, 27–34. [Google Scholar]
- Stergiou, C.; Psannis, K.E. Recent advances delivered by mobile cloud computing and Internet of Things for big data applications: A survey. Int. J. Netw. Manag. 2017, 27, e1930. [Google Scholar] [CrossRef]
- De Bruin, T.; Verbert, K.; Babuska, R. Railway Track Circuit Fault Diagnosis Using Recurrent Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 523–533. [Google Scholar] [CrossRef]
- Bai, X.; Wang, Z.; Sheng, L.; Wang, Z. Reliable Data Fusion of Hierarchical Wireless Sensor Networks With Asynchronous Measurement for Greenhouse Monitoring. IEEE Trans. Control Syst. Technol. 2019, 27, 1036–1046. [Google Scholar] [CrossRef]
- Fortino, G.; Giannantonio, R.; Gravina, R.; Kuryloski, P.; Jafari, R. Enabling effective programming and flexible management of efficient body sensor network applications. IEEE Trans. Hum.-Mach. Syst. 2013, 43, 115–133. [Google Scholar] [CrossRef]
- León, R.A.; Vittal, V.; Manimaran, G. Application of sensor network for secure electric energy infrastructure. IEEE Trans. Power Deliv. 2007, 22, 1021–1028. [Google Scholar]
- Park, P.; Di Marco, P.; Johansson, K.H. Cross-Layer Optimization for Industrial Control Applications Using Wireless Sensor and Actuator Mesh Networks. IEEE Trans. Ind. Electron. 2017, 64, 3250–3259. [Google Scholar] [CrossRef]
- Stanković, M.S.; Johansson, K.H.; Stipanović, D.M. Distributed seeking of nash equilibria with applications to mobile sensor networks. IEEE Trans. Autom. Control 2012, 57, 904–919. [Google Scholar] [CrossRef]
- Ruiz-Garcia, L.; Lunadei, L.; Barreiro, P.; Robla, J.I. A review of wireless sensor technologies and applications in agriculture and food industry: State of the art and current trends. Sensors 2009, 9, 4728–4750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, W.; Yin, Z.; Liu, R.; Li, Z.; Kim, S.M.; He, T. Boosting the Bitrate of Cross-Technology Communication on Commodity IoT Devices. IEEE/ACM Trans. Netw. 2019, 27, 1069–1083. [Google Scholar] [CrossRef]
- Das, S.; Moura, J.M.F. Consensus + Innovations Distributed Kalman Filter with Optimized Gains. IEEE Trans. Signal Process. 2017, 65, 467–481. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Liu, M.; Shi, P. H∞ filtering for nonlinear stochastic systems with sensor saturation, quantization and random packet losses. Signal Process. 2012, 92, 1387–1396. [Google Scholar] [CrossRef]
- Song, Y.; Wei, G.; Yang, G. Distributed H∞ filtering for a class of sensor networks with uncertain rates of packet losses. Signal Process. 2014, 104, 143–151. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Z.; He, X.; Zhou, D.H. On kalman-consensus filtering with random link failures over sensor networks. IEEE Trans. Autom. Control 2018, 63, 2701–2708. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Z.; Liu, Y.; Alsaadi, F.E. Distributed filtering for nonlinear time-delay systems over sensor networks subject to multiplicative link noises and switching topology. Int. J. Robust Nonlinear Control. 2019, 29, 2941–2959. [Google Scholar] [CrossRef]
- Shen, B.; Wang, Z.; Hung, Y.S. Distributed H∞-consensus filtering in sensor networks with multiple missing measurements: The finite-horizon case. Automatica 2010, 46, 1682–1688. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Lu, R.; Shi, P.; Li, H.; Xie, S. Finite-time distributed state estimation over sensor networks with round-robin protocol and fading channels. IEEE Trans. Cybern. 2018, 48, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Duan, R.; Li, J. Distributed H∞ filter design for T-S fuzzy systems with Sigma-Delta quantisation via non-PDC scheme. Int. J. Syst. Sci. 2019, 50, 694–712. [Google Scholar] [CrossRef]
- Tnunay, H.; Li, Z.; Ding, Z. Distributed nonlinear Kalman filter with communication protocol. Inf. Sci. (Ny) 2020, 513, 270–288. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Yuan, Y.; Date, P. Distributed H∞ Filtering for Switched Stochastic Delayed Systems over Sensor Networks with Fading Measurements. IEEE Trans. Cybern. 2020, 50, 2–14. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Z.; Shen, B.; Alsaadi, F.E. Security-guaranteed filtering for discrete-time stochastic delayed systems with randomly occurring sensor saturations and deception attacks. Int. J. Robust Nonlinear Control 2017, 27, 1194–1208. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wu, Q.E.; Peng, L. Simultaneous event-triggered fault detection and estimation for stochastic systems subject to deception attacks. Sensors 2018, 18, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Shi, L.; Cheng, P.; Chen, J.; Quevedo, D.E. Jamming attacks on remote state estimation in cyber-physical systems: A game-theoretic approach. IEEE Trans. Autom. Control 2015, 60, 2831–2836. [Google Scholar] [CrossRef]
- Li, T.; Zhang, J. Consensus Conditions of Multi-Agent Systems With Time-Varying Topologies and Stochastic Communication Noises. IEEE Trans. Autom. Control 2010, 55, 2043–2057. [Google Scholar] [CrossRef]
- Lin, P.; Jia, Y. Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies. Automatica 2009, 45, 2154–2158. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Y.P. Consentability and protocol design of multi-agent systems with stochastic switching topology. Automatica 2009, 45, 1195–1201. [Google Scholar] [CrossRef]
- Miao, G.; Xu, S.; Zou, Y. Necessary and sufficient conditions for mean square consensus under Markov switching topologies. Int. J. Syst. Sci. 2013, 44, 178–186. [Google Scholar] [CrossRef]
- Dong, H.; Wang, Z.; Gao, H. Distributed H∞ filtering for a class of markovian jump nonlinear time-delay systems over lossy sensor networks. IEEE Trans. Ind. Electron. 2013, 60, 4665–4672. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Z.; Liang, J.; Dong, H. Event-triggered distributed state estimation with randomly occurring uncertainties and nonlinearities over sensor networks: A delay-fractioning approach. J. Frankl. Inst. 2015, 352, 3750–3763. [Google Scholar] [CrossRef] [Green Version]
- Ding, D.; Wang, Z.; Shen, B.; Dong, H. Event-triggered distributed H∞ state estimation with packet dropouts through sensor networks. IET Control Theory Appl. 2015, 9, 1948–1955. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Wang, Z.; Lam, J.; Gao, H. Distributed filtering in sensor networks with randomly occurring saturations and successive packet dropouts. Int. J. Robust Nonlinear Control 2014, 24, 1743–1759. [Google Scholar] [CrossRef]
- Shen, B.; Wang, Z.; Liu, X. A stochastic sampled-data approach to distributed H∞ Filtering in sensor networks. IEEE Trans. Circuits Syst. I Regul. Pap. 2011, 58, 2237–2246. [Google Scholar] [CrossRef]
- Liang, J.; Wang, Z.; Liu, X. Distributed state estimation for discrete-time sensor networks with randomly varying nonlinearities and missing measurements. IEEE Trans. Neural Netw. 2011, 22, 486–496. [Google Scholar] [CrossRef] [Green Version]
- Pajic, M.; Lee, I.; Pappas, G.J. Attack-resilient state estimation for noisy dynamical systems. IEEE Trans. Control Netw. Syst. 2017, 4, 82–92. [Google Scholar] [CrossRef]
- Shoukry, Y.; Tabuada, P. Event-triggered state observers for sparse sensor noise/attacks. IEEE Trans. Autom. Control 2016, 61, 2079–2091. [Google Scholar] [CrossRef] [Green Version]
- Mo, Y.; Sinopoli, B. On the Performance Degradation of Cyber-Physical Systems under Stealthy Integrity Attacks. IEEE Trans. Autom. Control 2016, 61, 2618–2624. [Google Scholar] [CrossRef]
- Yang, W.; Lei, L.; Yang, C. Event-based distributed state estimation under deception attack. Neurocomputing 2017, 270, 145–151. [Google Scholar] [CrossRef]
- Bu, X.; Dong, H.; Han, F.; Li, G. Event-triggered distributed filtering over sensor networks with deception attacks and partial measurements. Int. J. Gen. Syst. 2018, 47, 395–407. [Google Scholar] [CrossRef]
- Liang, C.; Wen, F.; Wang, Z. Trust-based distributed Kalman filtering for target tracking under malicious cyber attacks. Inf. Fusion 2019, 46, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Ugrinovskii, V. Distributed robust estimation over randomly switching networks using H∞ consensus. Automatica 2013, 49, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Yang, Q.; Zhang, H.; Yang, F.; Zhan, X. Distributed H∞ State Estimation for a Class of Filtering Networks with Time-Varying Switching Topologies and Packet Losses. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 2047–2057. [Google Scholar] [CrossRef]
- Yang, F.; Han, Q.L.; Liu, Y. Distributed H∞ State Estimation over a Filtering Network with Time-Varying and Switching Topology and Partial Information Exchange. IEEE Trans. Cybern. 2019, 49, 870–882. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, X.M.; Han, Q.L. Event-triggered distributed H∞ filtering for networked systems with switching topologies. In Proceedings of the IEEE 13th International Conference on Industrial Informatics, Cambridge, UK, 22–24 July 2015; pp. 162–167. [Google Scholar]
- Ji, H.; Zhang, H.; Cui, B. Event-triggered H∞ filtering control for a class of distributed parameter systems with Markovian switching topology. J. Frankl. Inst. 2018, 355, 5928–5956. [Google Scholar] [CrossRef]
- Song, W.; Zhang, H.; Yan, H.; Peng, C. Distributed event triggered H∞ filtering with nonhomogeneous Markov switching topologies. In Proceedings of the 2016 UKACC International Conference on Control, Belfast, UK, 31 August–2 September 2016; pp. 1–6. [Google Scholar]
- Qu, H.; Yang, F. Distributed H∞-consensus filtering for target state tracking over a wireless filter network with switching topology, channel fading and packet dropouts. Neurocomputing 2019, in press. [Google Scholar] [CrossRef]
- Li, H.; Gao, H.; Shi, P.; Zhao, X. Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica 2014, 50, 1825–1834. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, H.; Yang, F.; Zhan, X.; Peng, C. Event-triggered asynchronous guaranteed cost control for markov jump discrete-time neural networks with distributed delay and channel fading. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 3588–3598. [Google Scholar]
- Li, H.; Shi, P.; Yao, D.; Wu, L. Observer-based adaptive sliding mode control for nonlinear Markovian jump systems. Automatica 2016, 64, 133–142. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, Y.; Shi, P.; Zhao, Y. Resilient asynchronous H∞ filtering for markov jump neural networks with unideal measurements and multiplicative noises. IEEE Trans. Cybern. 2015, 45, 2840–2852. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, R.; Shi, P.; Tao, J.; Xie, S. Robust Estimation for Neural Networks with Randomly Occurring Distributed Delays and Markovian Jump Coupling. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 845–855. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Z.; Hung, Y.S.; Gani, M. H∞ control for networked control systems with random communication delays. IEEE Trans. Autom. Control 2006, 51, 511–518. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, M.C.; Bernussou, J.; Geromel, J.C. A new discrete-time robust stability condition. Syst. Control Lett. 1999, 37, 261–265. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, F.; Liu, X.; Wen, J.; Xie, L.; Peng, L. Distributed Robust Filtering for Wireless Sensor Networks with Markov Switching Topologies and Deception Attacks. Sensors 2020, 20, 1948. https://doi.org/10.3390/s20071948
Zhu F, Liu X, Wen J, Xie L, Peng L. Distributed Robust Filtering for Wireless Sensor Networks with Markov Switching Topologies and Deception Attacks. Sensors. 2020; 20(7):1948. https://doi.org/10.3390/s20071948
Chicago/Turabian StyleZhu, Fengzeng, Xu Liu, Jiwei Wen, Linbo Xie, and Li Peng. 2020. "Distributed Robust Filtering for Wireless Sensor Networks with Markov Switching Topologies and Deception Attacks" Sensors 20, no. 7: 1948. https://doi.org/10.3390/s20071948
APA StyleZhu, F., Liu, X., Wen, J., Xie, L., & Peng, L. (2020). Distributed Robust Filtering for Wireless Sensor Networks with Markov Switching Topologies and Deception Attacks. Sensors, 20(7), 1948. https://doi.org/10.3390/s20071948