Distributed Robust Filtering for Wireless Sensor Networks with Markov Switching Topologies and Deception Attacks
Abstract
1. Introduction
1.1. Related Work
1.2. Main Contribution
2. Problem Statement
2.1. Preliminaries
2.2. System Model
2.3. Augmented Filtering Error System Model
3. Distributed Filtering Performance Analysis
4. Distributed - Filter Design
5. Simulation Example
6. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stergiou, C.; Psannis, K.E.; Plageras, A.P.; Ishibashi, Y.; Kim, B.-G. Algorithms for efficient digital media transmission over IoT and cloud networking. J. Multimed. Inf. Syst. 2018, 5, 27–34. [Google Scholar]
- Stergiou, C.; Psannis, K.E. Recent advances delivered by mobile cloud computing and Internet of Things for big data applications: A survey. Int. J. Netw. Manag. 2017, 27, e1930. [Google Scholar] [CrossRef]
- De Bruin, T.; Verbert, K.; Babuska, R. Railway Track Circuit Fault Diagnosis Using Recurrent Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 523–533. [Google Scholar] [CrossRef]
- Bai, X.; Wang, Z.; Sheng, L.; Wang, Z. Reliable Data Fusion of Hierarchical Wireless Sensor Networks With Asynchronous Measurement for Greenhouse Monitoring. IEEE Trans. Control Syst. Technol. 2019, 27, 1036–1046. [Google Scholar] [CrossRef]
- Fortino, G.; Giannantonio, R.; Gravina, R.; Kuryloski, P.; Jafari, R. Enabling effective programming and flexible management of efficient body sensor network applications. IEEE Trans. Hum.-Mach. Syst. 2013, 43, 115–133. [Google Scholar] [CrossRef]
- León, R.A.; Vittal, V.; Manimaran, G. Application of sensor network for secure electric energy infrastructure. IEEE Trans. Power Deliv. 2007, 22, 1021–1028. [Google Scholar]
- Park, P.; Di Marco, P.; Johansson, K.H. Cross-Layer Optimization for Industrial Control Applications Using Wireless Sensor and Actuator Mesh Networks. IEEE Trans. Ind. Electron. 2017, 64, 3250–3259. [Google Scholar] [CrossRef]
- Stanković, M.S.; Johansson, K.H.; Stipanović, D.M. Distributed seeking of nash equilibria with applications to mobile sensor networks. IEEE Trans. Autom. Control 2012, 57, 904–919. [Google Scholar] [CrossRef]
- Ruiz-Garcia, L.; Lunadei, L.; Barreiro, P.; Robla, J.I. A review of wireless sensor technologies and applications in agriculture and food industry: State of the art and current trends. Sensors 2009, 9, 4728–4750. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Yin, Z.; Liu, R.; Li, Z.; Kim, S.M.; He, T. Boosting the Bitrate of Cross-Technology Communication on Commodity IoT Devices. IEEE/ACM Trans. Netw. 2019, 27, 1069–1083. [Google Scholar] [CrossRef]
- Das, S.; Moura, J.M.F. Consensus + Innovations Distributed Kalman Filter with Optimized Gains. IEEE Trans. Signal Process. 2017, 65, 467–481. [Google Scholar] [CrossRef]
- Yang, W.; Liu, M.; Shi, P. H∞ filtering for nonlinear stochastic systems with sensor saturation, quantization and random packet losses. Signal Process. 2012, 92, 1387–1396. [Google Scholar] [CrossRef]
- Song, Y.; Wei, G.; Yang, G. Distributed H∞ filtering for a class of sensor networks with uncertain rates of packet losses. Signal Process. 2014, 104, 143–151. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Z.; He, X.; Zhou, D.H. On kalman-consensus filtering with random link failures over sensor networks. IEEE Trans. Autom. Control 2018, 63, 2701–2708. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Z.; Liu, Y.; Alsaadi, F.E. Distributed filtering for nonlinear time-delay systems over sensor networks subject to multiplicative link noises and switching topology. Int. J. Robust Nonlinear Control. 2019, 29, 2941–2959. [Google Scholar] [CrossRef]
- Shen, B.; Wang, Z.; Hung, Y.S. Distributed H∞-consensus filtering in sensor networks with multiple missing measurements: The finite-horizon case. Automatica 2010, 46, 1682–1688. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, R.; Shi, P.; Li, H.; Xie, S. Finite-time distributed state estimation over sensor networks with round-robin protocol and fading channels. IEEE Trans. Cybern. 2018, 48, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Duan, R.; Li, J. Distributed H∞ filter design for T-S fuzzy systems with Sigma-Delta quantisation via non-PDC scheme. Int. J. Syst. Sci. 2019, 50, 694–712. [Google Scholar] [CrossRef]
- Tnunay, H.; Li, Z.; Ding, Z. Distributed nonlinear Kalman filter with communication protocol. Inf. Sci. (Ny) 2020, 513, 270–288. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Yuan, Y.; Date, P. Distributed H∞ Filtering for Switched Stochastic Delayed Systems over Sensor Networks with Fading Measurements. IEEE Trans. Cybern. 2020, 50, 2–14. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Z.; Shen, B.; Alsaadi, F.E. Security-guaranteed filtering for discrete-time stochastic delayed systems with randomly occurring sensor saturations and deception attacks. Int. J. Robust Nonlinear Control 2017, 27, 1194–1208. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Q.E.; Peng, L. Simultaneous event-triggered fault detection and estimation for stochastic systems subject to deception attacks. Sensors 2018, 18, 321. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shi, L.; Cheng, P.; Chen, J.; Quevedo, D.E. Jamming attacks on remote state estimation in cyber-physical systems: A game-theoretic approach. IEEE Trans. Autom. Control 2015, 60, 2831–2836. [Google Scholar] [CrossRef]
- Li, T.; Zhang, J. Consensus Conditions of Multi-Agent Systems With Time-Varying Topologies and Stochastic Communication Noises. IEEE Trans. Autom. Control 2010, 55, 2043–2057. [Google Scholar] [CrossRef]
- Lin, P.; Jia, Y. Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies. Automatica 2009, 45, 2154–2158. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Y.P. Consentability and protocol design of multi-agent systems with stochastic switching topology. Automatica 2009, 45, 1195–1201. [Google Scholar] [CrossRef]
- Miao, G.; Xu, S.; Zou, Y. Necessary and sufficient conditions for mean square consensus under Markov switching topologies. Int. J. Syst. Sci. 2013, 44, 178–186. [Google Scholar] [CrossRef]
- Dong, H.; Wang, Z.; Gao, H. Distributed H∞ filtering for a class of markovian jump nonlinear time-delay systems over lossy sensor networks. IEEE Trans. Ind. Electron. 2013, 60, 4665–4672. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Z.; Liang, J.; Dong, H. Event-triggered distributed state estimation with randomly occurring uncertainties and nonlinearities over sensor networks: A delay-fractioning approach. J. Frankl. Inst. 2015, 352, 3750–3763. [Google Scholar] [CrossRef]
- Ding, D.; Wang, Z.; Shen, B.; Dong, H. Event-triggered distributed H∞ state estimation with packet dropouts through sensor networks. IET Control Theory Appl. 2015, 9, 1948–1955. [Google Scholar] [CrossRef]
- Dong, H.; Wang, Z.; Lam, J.; Gao, H. Distributed filtering in sensor networks with randomly occurring saturations and successive packet dropouts. Int. J. Robust Nonlinear Control 2014, 24, 1743–1759. [Google Scholar] [CrossRef]
- Shen, B.; Wang, Z.; Liu, X. A stochastic sampled-data approach to distributed H∞ Filtering in sensor networks. IEEE Trans. Circuits Syst. I Regul. Pap. 2011, 58, 2237–2246. [Google Scholar] [CrossRef]
- Liang, J.; Wang, Z.; Liu, X. Distributed state estimation for discrete-time sensor networks with randomly varying nonlinearities and missing measurements. IEEE Trans. Neural Netw. 2011, 22, 486–496. [Google Scholar] [CrossRef]
- Pajic, M.; Lee, I.; Pappas, G.J. Attack-resilient state estimation for noisy dynamical systems. IEEE Trans. Control Netw. Syst. 2017, 4, 82–92. [Google Scholar] [CrossRef]
- Shoukry, Y.; Tabuada, P. Event-triggered state observers for sparse sensor noise/attacks. IEEE Trans. Autom. Control 2016, 61, 2079–2091. [Google Scholar] [CrossRef]
- Mo, Y.; Sinopoli, B. On the Performance Degradation of Cyber-Physical Systems under Stealthy Integrity Attacks. IEEE Trans. Autom. Control 2016, 61, 2618–2624. [Google Scholar] [CrossRef]
- Yang, W.; Lei, L.; Yang, C. Event-based distributed state estimation under deception attack. Neurocomputing 2017, 270, 145–151. [Google Scholar] [CrossRef]
- Bu, X.; Dong, H.; Han, F.; Li, G. Event-triggered distributed filtering over sensor networks with deception attacks and partial measurements. Int. J. Gen. Syst. 2018, 47, 395–407. [Google Scholar] [CrossRef]
- Liang, C.; Wen, F.; Wang, Z. Trust-based distributed Kalman filtering for target tracking under malicious cyber attacks. Inf. Fusion 2019, 46, 44–50. [Google Scholar] [CrossRef]
- Ugrinovskii, V. Distributed robust estimation over randomly switching networks using H∞ consensus. Automatica 2013, 49, 160–168. [Google Scholar] [CrossRef]
- Yan, H.; Yang, Q.; Zhang, H.; Yang, F.; Zhan, X. Distributed H∞ State Estimation for a Class of Filtering Networks with Time-Varying Switching Topologies and Packet Losses. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 2047–2057. [Google Scholar] [CrossRef]
- Yang, F.; Han, Q.L.; Liu, Y. Distributed H∞ State Estimation over a Filtering Network with Time-Varying and Switching Topology and Partial Information Exchange. IEEE Trans. Cybern. 2019, 49, 870–882. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, X.M.; Han, Q.L. Event-triggered distributed H∞ filtering for networked systems with switching topologies. In Proceedings of the IEEE 13th International Conference on Industrial Informatics, Cambridge, UK, 22–24 July 2015; pp. 162–167. [Google Scholar]
- Ji, H.; Zhang, H.; Cui, B. Event-triggered H∞ filtering control for a class of distributed parameter systems with Markovian switching topology. J. Frankl. Inst. 2018, 355, 5928–5956. [Google Scholar] [CrossRef]
- Song, W.; Zhang, H.; Yan, H.; Peng, C. Distributed event triggered H∞ filtering with nonhomogeneous Markov switching topologies. In Proceedings of the 2016 UKACC International Conference on Control, Belfast, UK, 31 August–2 September 2016; pp. 1–6. [Google Scholar]
- Qu, H.; Yang, F. Distributed H∞-consensus filtering for target state tracking over a wireless filter network with switching topology, channel fading and packet dropouts. Neurocomputing 2019, in press. [Google Scholar] [CrossRef]
- Li, H.; Gao, H.; Shi, P.; Zhao, X. Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica 2014, 50, 1825–1834. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, H.; Yang, F.; Zhan, X.; Peng, C. Event-triggered asynchronous guaranteed cost control for markov jump discrete-time neural networks with distributed delay and channel fading. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 3588–3598. [Google Scholar]
- Li, H.; Shi, P.; Yao, D.; Wu, L. Observer-based adaptive sliding mode control for nonlinear Markovian jump systems. Automatica 2016, 64, 133–142. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, Y.; Shi, P.; Zhao, Y. Resilient asynchronous H∞ filtering for markov jump neural networks with unideal measurements and multiplicative noises. IEEE Trans. Cybern. 2015, 45, 2840–2852. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, R.; Shi, P.; Tao, J.; Xie, S. Robust Estimation for Neural Networks with Randomly Occurring Distributed Delays and Markovian Jump Coupling. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 845–855. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Z.; Hung, Y.S.; Gani, M. H∞ control for networked control systems with random communication delays. IEEE Trans. Autom. Control 2006, 51, 511–518. [Google Scholar] [CrossRef]
- De Oliveira, M.C.; Bernussou, J.; Geromel, J.C. A new discrete-time robust stability condition. Syst. Control Lett. 1999, 37, 261–265. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, F.; Liu, X.; Wen, J.; Xie, L.; Peng, L. Distributed Robust Filtering for Wireless Sensor Networks with Markov Switching Topologies and Deception Attacks. Sensors 2020, 20, 1948. https://doi.org/10.3390/s20071948
Zhu F, Liu X, Wen J, Xie L, Peng L. Distributed Robust Filtering for Wireless Sensor Networks with Markov Switching Topologies and Deception Attacks. Sensors. 2020; 20(7):1948. https://doi.org/10.3390/s20071948
Chicago/Turabian StyleZhu, Fengzeng, Xu Liu, Jiwei Wen, Linbo Xie, and Li Peng. 2020. "Distributed Robust Filtering for Wireless Sensor Networks with Markov Switching Topologies and Deception Attacks" Sensors 20, no. 7: 1948. https://doi.org/10.3390/s20071948
APA StyleZhu, F., Liu, X., Wen, J., Xie, L., & Peng, L. (2020). Distributed Robust Filtering for Wireless Sensor Networks with Markov Switching Topologies and Deception Attacks. Sensors, 20(7), 1948. https://doi.org/10.3390/s20071948