A Joint Symbol-Detection, Channel-Estimation and Decoding Scheme under Few-Bit ADCs in mmWave Communications
Abstract
:1. Introduction
- We regard PBiGAMP’s quantities as noise corrupted versions of true parameters to be estimated, helping understand the inner behavior of PBiGAMP.
- Numerical results show that the proposed scheme can obtain significant performance gain compared to the benchmark algorithms.
2. System Model and Factor Graph Representation
2.1. Single-Carrier Block Transmission System
2.2. System Factor Graph
3. Joint Symbol Detection, Channel Estimation and Decoding Scheme
3.1. Review of PBiGAMP
3.2. Joint Symbol Detection, Channel Estimation and Decoding Scheme via PBiGAMP
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
LTE | Long Term Evolution |
ADC | analog-to-digital |
PBiGAMP | Parameteric bilinear generalized approximate message passing |
OFDM | orthogonal frequency division multiplexing |
SC | single-carrier |
FDE | frequency domain equalization |
GAMP | generalized approximate message passing |
VAMP | vector approximate message passing |
MIMO | multiple input multiple output |
PCSI | perfect channel state information |
FFT | fast Fourier transform |
probability density function | |
pmf | probability mass function |
VGA | variable gain amplifier |
AGC | automatic gain control |
RF | radio frequency |
BP | belief propagation |
SPA | sum-product algorithm |
MSE | mean square error |
AWGN | additive white Gaussian noise |
GMM | Gaussian mixture model |
SISO | soft-input and soft-output |
LDPC | low-density parity-check |
MMSE | minimum mean square error |
LMMSE | linear minimum mean square error |
BER | bit error rate |
NMSE | normalized mean square error |
References
- Agiwal, M.; Roy, A.; Saxena, M. Next Generation 5G Wireless Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2016, 18, 1617–1655. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F. Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef]
- Heath, R.W.; Gonzalez-Preclic, N.; Rangan, S.; Rho, W.; Sayeed, A.M. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J. Sel. Top. Signal Process. 2016, 10, 436–453. [Google Scholar] [CrossRef]
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Bingham, J.A.C. Multicarrier modulation for data transmission: An idea whose time has come. IEEE Commun. Mag. 1990, 28, 5–14. [Google Scholar] [CrossRef]
- Falconer, D.; Ariyavisitakul, S.L.; Benyamin-Seeyar, A.; Eidson, B. Frequency domain equalization for single-carrier broadband wireless systems. IEEE Commun. Mag. 2002, 40, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Pancaldi, F.; Vitetta, G.M.; Al-Dhahir, N.; Uysal, M.; Mheidat, H. Single-carrier frequency domain equalization. IEEE Signal Process. Mag. 2008, 25, 37–56. [Google Scholar] [CrossRef]
- Mo, J.; Schniter, P.; Heath, R.W. Channel estimation in broadband millimeter wave MIMO systems with few-bit ADCs. IEEE Trans. Signal Process. 2018, 66, 1141–1154. [Google Scholar] [CrossRef]
- Li, Y.; Tao, C.; Seco-Granados, G.; Mezghani, A.; Swindlehurst, A.L.; Liu, L. Channel estimation and performance analysis of one-bit massive MIMO systems. IEEE Trans. Signal Process. 2017, 65, 4078–7089. [Google Scholar] [CrossRef]
- Lok, T.; Wei, V.K.-W. Channel estimation with quantized observations. In Proceedings of the 1998 IEEE International Symposium on Information Theory, Cambridge, MA, USA, 16–21 August 1998. [Google Scholar]
- Wang, S.; Li, Y.; Wang, J. Multiuser detection for uplink large-scale MIMO under one-bit quantization. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, Australia, 10–14 June 2014. [Google Scholar]
- Wang, S.C.; Wei, N.; Zhang, Z. Multiuser detection in massive spatial modulation MIMO with low-resolution ADCs. IEEE Trans. Wirel. Commun. 2015, 14, 2156–2168. [Google Scholar] [CrossRef]
- Mezghani, A.; Nossek, J. Belief propagation based MIMO detection operating on quantized channel output. In Proceedings of the 2010 IEEE International Symposium on Information Theory, Austin, TX, USA, 13–18 June 2010. [Google Scholar]
- Rangan, S. Generalized approximate message passing for estimation with random linear mixing. In Proceedings of the 2011 IEEE International Symposium on Information Theory, St. Petersburg, Russia, 31 July–5 August 2011. [Google Scholar]
- Schniter, P.; Rangan, S.; Fletcher, A.F. Vector approximate message passing for the generalized linear model. In Proceedings of the 2016 50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 6–9 November 2016. [Google Scholar]
- Wen, C.K.; Wang, C.J.; Jin, S.; Wong, K.K.; Ting, P. Bayes-optimal joint channel-and-data estimation for massive MIMO with low-precision ADCs. IEEE Trans. Signal Process. 2016, 64, 2541–2556. [Google Scholar] [CrossRef] [Green Version]
- Parker, J.T.; Schniter, P.; Cevher, V. Bilinear generalized approximate message passing. IEEE Trans. Signal Process. 2014, 62, 5839–5853. [Google Scholar] [CrossRef] [Green Version]
- Steiner, F.; Mezghani, A.; Swindlehurst, L.; Nossek, J.; Utschick, W. Turbo-like joint data-and-channel estimation in quantized massive MIMO systems. In Proceedings of the 20th International ITG Workshop on Smart Antennas (WSA 2016), Munich, Germany, 9–11 March 2016. [Google Scholar]
- Cao, C.; Li, H.; Hu, Z. An AMP based decoder for massive MU-MIMO-OFDM with low-resolution ADCs. In Proceedings of the 2017 International Conference on Computing, Networking and Communications (ICNC), Santa Clara, CA, USA, 26–29 January 2017. [Google Scholar]
- Sun, P.; Wang, Z.; Heath, R.W.; Schniter, P. Joint channel-estimation/decoding with frequency-selective channels and few-bit ADCs. IEEE Trans. Signal Process. 2019, 67, 899–914. [Google Scholar] [CrossRef] [Green Version]
- Parker, J.T.; Schniter, P. Parametric bilinear generalized approximate message passing. IEEE J. Sel. Top. Signal Process. 2016, 10, 795–808. [Google Scholar] [CrossRef] [Green Version]
- Koetter, R.; Singer, A.C.; Tücher, M. Turbo equalization. IEEE Signal Process. Mag. 2004, 21, 67–80. [Google Scholar] [CrossRef]
- Kschischang, F.R.; Frey, B.J.; Loeliger, H.-A. Factor graphs and the sum-product algorithm. IEEE Trans. Inform. Theory 2001, 47, 498–519. [Google Scholar] [CrossRef] [Green Version]
- Max, J. Quantizing for minimum distortion. IRE Trans. Inf. Theory 1960, 6, 7–12. [Google Scholar] [CrossRef]
- MacKay, D.J.C. Information Theory, Inference and Learning Algorithms; Cambridge Univ. Press: New York, NY, USA, 2003. [Google Scholar]
- Kozintsev, I. Matlab Programs for Encoding and Decoding of LDPC Codes Over GF(2m). Available online: http://www.kozintsev.net/soft.html (accessed on 26 March 2020).
- Mezghani, A.; Nossek, J. Capacity lower bound of MIMO channels with output quantization and correlated noise. In Proceedings of the IEEE International Symposium on Information Theory, Cambridge, MA, USA, 1–6 July 2012; pp. 2113–2117. Available online: https://mediatum.ub.tum.de/doc/1171263/1171263.pdf (accessed on 26 March 2020).
- Maslennikov, R.; Lomayev, A. Implementation of 60 GHz WLAN Channel Model; Tech. Rep. 802.11-10/0854r3; Institute of Electrical and Electronics Engineers: New York, NY, USA, 2010. [Google Scholar]
- Mo, J.; Schniter, P.; González-Prelcic, N.; Heath, R.W. Channel estimation in millimeter wave MIMO systems with one-bit quantization. In Proceedings of the 2014 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2–5 November 2014. [Google Scholar]
- McDonnell, M.D.; Stocks, N.G.; Pearce, C.E.M.; Abbott, D. Stochastic Resonance: From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
PBiGAMP in Reference [20] | PBiGAMP-Bus | LMMSE-Bus | ||
---|---|---|---|---|
Number of FFT | 4K + 2 | 4K + 2 | 4K + 2 | |
Per-iteration Complexity |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, P.; Liu, F.; Cui, J.; Wang, W.; Ye, Y.; Wang, Z. A Joint Symbol-Detection, Channel-Estimation and Decoding Scheme under Few-Bit ADCs in mmWave Communications. Sensors 2020, 20, 1857. https://doi.org/10.3390/s20071857
Sun P, Liu F, Cui J, Wang W, Ye Y, Wang Z. A Joint Symbol-Detection, Channel-Estimation and Decoding Scheme under Few-Bit ADCs in mmWave Communications. Sensors. 2020; 20(7):1857. https://doi.org/10.3390/s20071857
Chicago/Turabian StyleSun, Peng, Fei Liu, Jianhua Cui, Wei Wang, Yangdong Ye, and Zhongyong Wang. 2020. "A Joint Symbol-Detection, Channel-Estimation and Decoding Scheme under Few-Bit ADCs in mmWave Communications" Sensors 20, no. 7: 1857. https://doi.org/10.3390/s20071857
APA StyleSun, P., Liu, F., Cui, J., Wang, W., Ye, Y., & Wang, Z. (2020). A Joint Symbol-Detection, Channel-Estimation and Decoding Scheme under Few-Bit ADCs in mmWave Communications. Sensors, 20(7), 1857. https://doi.org/10.3390/s20071857