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Abstract: Few-bit analog-to-digital converter (ADC) is regarded as a promising technique to greatly
reduce power consumption of Internet of Things (IoT) devices in millimeter-wave (mmWave)
communications. In this work, based on the recently proposed parametric bilinear generalized
approximate message passing (PBiGAMP), we propose a new scheme to perform joint symbol
detection, channel estimation and decoding. The proposed scheme is flexible to deal with discrete
prior on symbols, Gaussian mixture prior on channels and quantized likelihood on observations.
Furthermore, we introduce doping factor to control the portion of “extrinsic” and “posterior”
information with negligible complexity increase. Since this joint scheme can be implemented via
fast Fourier transformation (FFT), the complexity grows only logarithmically. Compared to the
benchmark algorithms, numerical results show that the proposed joint scheme can achieve significant
performance gain, and demonstrate the effectiveness in dealing with the nonlinear distortion from
few-bit ADC.

Keywords: IoT; mmWave communications; few-bit ADC; parametric bilinear generalized
approximate message passing; doping factor

1. Introduction

Compared to current 4G Long Term Evolution (LTE) networks, the vision of next generation 5G
wireless communications lies in providing very high data rates, extremely low latency, and manifold
increase in base station capacity [1]. In particular, 5G wireless networks are likely to incorporate
Millimeter-wave (mmWave) technology [2], which exploits large chunks of bandwidth at carrier
frequencies of 30 GHz and above [3]. In addition, the development of 5G networks is driven by future
Internet of Things (IoT) connectivity [4].

However, the main challenge in mmWave systems comes from the analog-to-digital converters
(ADCs) used at IoT receivers, whose power consumption grows exponentially with the number of bits
used in conversion. Specially, at GHz bandwidths, high-precision (e.g., 10 bit) ADCs may consume
several watts of power, which is unrealistic for handheld mobile IoT devices. Another challenge is
that high-precision ADCs may be too costly in hardware implementation. Therefore, there has been
a growing interest in few-bit (e.g., 1–3 bit) ADCs at receiver side. However, few-bit ADCs will introduce
severe quantization distortion to receiving signals, which brings difficulties in receiver design.

Furthermore, wide bandwidth will also lead to challenges in transmitters. In particular,
the wide-bandwidth linear amplifiers are too costly and power-hungry, which suggests to transmit
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signals with low peak-to-average power (PAPR) ratio. Compared to orthogonal frequency division
multiplexing (OFDM) [5], single-carrier (SC) with frequency domain equalization (FDE) [6,7]
has similar performance and complexity but much lower PAPR, which relaxes requirements on
power-amplifier linearity and thus enables the use of more efficient and cheaper amplifiers. Due to the
above reasons, we consider SC system with few-bit ADCs in this work.

We now review relevant existing work on receiver design under few-bit quantization. Usually,
channel estimation [8–10] and symbol detection [11–13] are separately considered. Particularly,
in Reference [8], a broadband channel estimation algorithm was proposed in a multiple input multiple
output (MIMO) system based on generalized approximate message passing (GAMP) [14] and vector
approximate message passing (VAMP) [15]. However, this paper only focused on channel estimation
without considering symbol detection. In Reference [11], the authors proposed a computationally
efficient method using GAMP and fast Fourier transform (FFT) in large-scale MIMO uplink system,
where perfect channel state information (PCSI) was assumed to be known at receiver. In recent years,
researchers show that joint channel estimation and symbol detection, even involving bit decoding,
can significantly improve performance. In Reference [16], a Bayes-optimal joint channel-and-data
estimation was proposed by employing bilinear GAMP (BiGAMP) [17]. In Reference [18], a joint
channel-and-data estimation was realized via a Turbo-like approach, where GAMP was used twice in
channel estimation and data detection, respectively. However, both Reference [16] and Reference [18]
only consider flat fading channels, and wideband channels are frequency selective in practice.
In Reference [19], a joint channel-estimation, symbol-detection and decoding scheme is proposed
using approximate message passing. Nevertheless, Reference [19] requires OFDM which has high
PAPR. Considering the quantized SC systems with frequency selective channels, our recent work
in Reference [20] designed a joint receiving scheme based on the parametric bilinear generalized
approximate message passing (PBiGMAP) [21].

In this work, we further apply PBiGAMP into the receiver design in the mmWave communication
systems under few-bit ADCs. We propose a joint symbol detection, channel estimation and decoding
scheme, which can be implemented in a fast way via FFTs. This scheme is compatible with the
Gaussian mixture model to estimate sparse mmWave channels, the discrete prior to detect transmitting
symbols and non-linear likelihood to cope with quantization distortion from few-bit ADCs. The main
contributions of this work are in the followings:

• We regard PBiGAMP’s quantities as noise corrupted versions of true parameters to be estimated,
helping understand the inner behavior of PBiGAMP.

• Different from the common sense about Turbo equalization [22], the proposed scheme introduces
doping factor to control the portion of “extrinsic” and “posterior” information with negligible
complexity increase, which can include the joint approach in Reference [20] as a special case.

• Numerical results show that the proposed scheme can obtain significant performance gain
compared to the benchmark algorithms.

The rest of this paper is organized as follows: In Section 2, we present the SC Model under few-bit
ADCs and the corresponding factor graph representation. Section 3 describes the proposed joint
symbol-detection, channel-estimation and decoding scheme. Section 4 outlines the simulation results.
Finally, Section 5 concludes this paper.

Notation: We use boldface uppercase letters like B to denote matrices and boldface lowercase letters
like b to denote vectors, where bi represents the ith element of b, and [B]i,j represents the ith row and
jth column of B. Also, IM is the M×M identity matrix, 1M is the M-length vector of ones, 0M is the
M-length vector of zeros, Diag(b) is the diagonal matrix formed from the vector b, diag(B) is the vector
formed from the diagonal of matrix B, FN is the N× N unitary discrete Fourier transform (DFT) matrix,
F1:L

N is the matrix formed by the first L columns of FN. For matrices and vectors, (·)T denotes transpose,
(·)H denotes conjugate transpose, (·)∗ denotes conjugate, and⊗ denotes the Kronecker product. Likewise,
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� denote element-wise multiplication. Finally, the probability density function (pdf) of a multivariate
complex Gaussian random vector x with mean x̂ and covariance Σ will be denoted by CN (x; x̂, Σ).

2. System Model and Factor Graph Representation

2.1. Single-Carrier Block Transmission System

Considering single-carrier block transmission system, where Nb information bit b ∈ {0, 1}Nb is
encoded and interleaved to a coded sequence c ∈ {0, 1}Nc of length Nc, which is then mapped to data
symbol xD ∈ SND with S being a 2A-ary complex symbol alphabet. Data symbol xD, pilot symbol and
guard symbol are further collected into the transmitted matrix X ∈ CM×K, where the first KP columns
contain pilot samples and the remaining K− KP columns contain “data+guard” samples.

The unquantized received samples Ȳ can be represented as

Ȳ = HX + W ∈ CM×K, (1)

where H ∈ CM×M is the circulant matrix with first column [hT 0T
M−L]

T, and h , [h0, . . . , hL−1]
T is the

baseband channel impulse response, and W ∈ CM×K contains additive white Gaussian noise (AWGN)
with variance σ2

w, which is assumed to be known. We can then write Equation (1) in vectorized form as

ȳ = (IK ⊗ H)x + w, (2)

with ȳ , vec(Ȳ), x , vec(X), w , vec(W), and ⊗ denoting the Kronecker product.
As illustrated in Figure 1, on the receiver side, a variable gain amplifier (VGA) with an automatic

gain control (AGC) is used before quantization to ensure that analog baseband samples are within
a proper range, for example, (−1,+1). In the sequel, the received signal is down-converted into
analog baseband samples ȳ and then discretized using a complex-valued quantizer Q(·), yielding the
quantized received samples

y = Q
(
ȳ
)
, (3)

where the few-bit quantizerQ(·) applies component-wise and we assume in our numerical experiments
that b-bit uniform mid-rise quantization [23] is separately applied to the real and imaginary parts.
In particular, the m-th entry in y can be represented as

ym = sign(Re(ȳm))

(
min

{⌈
|Re(ȳm)|
4Re

⌉
, 2b−1

}
− 1

2

)
(4)

+ j sign(Im(ȳm))

(
min

{⌈
|Im(ȳm)|
4Im

⌉
, 2b−1

}
− 1

2

)
,

where 4Re ,
√
E
[
Re(ȳm)2

]
4b, 4Im ,

√
E
[
Im(ȳm)2

]
4b, and 4b is chosen to minimize the

mean-squared error (MSE) E
[
|ym − ȳm|2

]
under Gaussian ȳm. The average powers E

[
Re(ȳm)2] and

E
[
Im(ȳm)2] can be measured by analog circuits before the ADC. When b>1, such measurements are

typically performed as part of AGC.
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Figure 1. A quantized system with few-bit ADC. (a) Radio frequency (RF) architecture on receiver side.
(b) An example of b = 3 -bit quantization.

2.2. System Factor Graph

Our goal is to infer the information bits b from the few-bit measurements y under the
block-transmission model in Equation (1) and the few-bit quantization model in Equation (4).
Particularly, the posterior bit marginals p(bi|y) can in principle be computed via

p(bi|y) = ∑
b−i

p(b|y) = ∑
b−i

p(y|b)p(b)
p(y)

∝ ∑
b−i

p(y|b) (5)

= ∑
b−i ,x,c

∫
CL

p(y|h, x)p(h)p(x|c)p(c|b)dh (6)

= ∑
b−i ,c

p(c|b)∑
x

∫
CL

[
MK

∏
m=1

p(ym|h, x)

][
L−1

∏
l=0

p(hl)

]
dh

×
[

KD

∏
k=1

ND−1

∏
n=0

p(x(KP+k−1)M+n|c(k−1)ND+n)

]
, (7)

where p(y|h, x), p(h), p(x|c) and p(c|b) denote observation likelihood, channel prior, symbol mapping
and coding/interleaving constraint, respectively, and b−i , [b1, . . . , bi−1, bi+1, . . . , bNb ]

T. Above,
Equation (5) can be reached due to the uniformly distributed assumption on information bits b and
Bayes’ rule; Equation (6) is due to the dependency relationships among the random vectors y, h, x, c,
and b; and Equation (7) is due to the separable nature of p(y|h, x), p(h), and p(x|c).

We can obtain the exact posterior bit marginal distribution p(bi | y) in principle, but doing so is
impractical from the standpoint of complexity. A practical alternative is to perform belief-propagation
(BP) using the sum-product algorithm (SPA) [24] on the factor graph. The above communication
systems can be visualized using bipartite factor graph shown in Figure 2, where the solid rectangles
represent the factor nodes and the open circles represent the variable nodes. The factor graph can be
partitioned into two subgraphs: the left subgraph corresponds to soft-input and soft-output (SISO)
decoding and the right subgraph corresponds to soft equalization with unknown channels. However,
exact implementation of the SPA in Figure 2 is still intractable in the soft-equalization subgraph.
As a computationally efficient approximation of the SPA, the recently proposed PBiGAMP [21]
approaches to the marginal posteriors of x and h iteratively from their noisy bilinear observation y
under independent assumptions on {pxn(xn)}MK−1

n=0 , {phl
(hl)}L−1

l=0 and {pym/zm(ym/zm)}MK−1
m=0 .
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Figure 2. The factor graph corresponding to the single-carrier transmission.

3. Joint Symbol Detection, Channel Estimation and Decoding Scheme

3.1. Review of PBiGAMP

Since many readers may not be familiar with PBiGAMP [21], we now briefly review the
background of the algorithm in this subsection. PBiGAMP is a computational efficient approach
to approximating the marginal posteriors of independent random variables {xn}N−1

n=0 and {hl}L−1
l=0 from

measurements y = [y0, . . . , yM−1]
T generated under a likelihood of the form

py | z(y | z) =
M−1

∏
m=0

pym | zm(ym | zm) (8)

where the noiseless observation zm is

zm =
N−1

∑
n=0

L−1

∑
l=0

xnz(n,l)
m hl , , (9)

with known parameter z(n,l)
m determined by the system. PBiGAMP assumes that x and h obey

independent distribution, for example,

px(x) =
N−1

∏
n=0

pxn(xn), (10)

ph(h) =
L−1

∏
L=0

phl
(hl).. (11)

Note that to apply PBiGAMP, we should specify what z(n,l)
m , pym | zm(ym | zm), pxn(xn) and phl

(hl) are
in SC system.

The factor graph for PBiGAMP is shown in Figure 3. The main ideas behind PBiGAMP are
the followings. First, although the messages flowing rightward from nodes {xn} to measurement
nodes {pym | zm(ym | zm)} and leftward from node {hl} to {pym | zm(ym | zm)} are clearly non-Gaussian,

PBiGAMP accurately approximates the messages about zm = ∑N−1
n=0 ∑L−1

l=0 xnz(n,l)
m hl as Gaussian,

when N and L are large, using the central limit theorem. Moreover, to obtain the parameters of
the distribution about zm (i.e., its mean and variance), only the mean and variance of each xn and hl are
needed. Thus, it suffices to pass only means and variances rightward from each xn and leftward from
each hl . Second, since the measurement nodes {pym | zm(ym | zm)} are probably non-Gaussian (i.e., the
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quantized model described in Section 2.1), the messages from measurement nodes {pym | zm(ym | zm)}
flowing leftward to {xn} and rightward to {hl} would be non-Gaussian. PBiGAMP approximates
them as Gaussian using the second-order Taylor series, and pass only the resulting means and
variances leftward (rightward) from measurement nodes {pym | zm(ym | zm)} to {xn} ({hl}) nodes.
Finally, PBiGMAP employs further simplifications to approximate differences among the outgoing
means and variances of each measurement nodes {pym | zm(ym | zm)}, and the incoming means and
variances of each variable nodes {xn} and {hl}, using the first-order Taylor series approximation.
Additionally, PBiGAMP repeatedly drops terms that vanish in the large-system limit.

pxn (xn) xn

pym |zm (ym |zm)

hl phl
(hl)

Figure 3. The factor graph for parametric generalized bilinear inference under N = 3, M = 4,
and L = 2.

3.2. Joint Symbol Detection, Channel Estimation and Decoding Scheme via PBiGAMP

To derive the proposed joint symbol-detection, channel-estimation and decoding framework, we
should first specify the symbol prior pxn(xn) in Equation (10), the channel prior phl

(hl) in Equation (11),

the likelihood function pym | zm(ym/zm) in Equation (8) and the PBiGAMP quantity z(i,j)m in Equation (9).
Due to the sparse behavior of mmWave channels, we propose to use D-state Gaussian mixture

model (GMM) [8,20] to estimate channels,

phl
(hl) =

D

∑
d=1

λl,dCN (hl ; 0, νl,d), (12)

where λl,d ≥ 0 and νl,d > 0 are the weight and variance of the d-th mixture component of the l tap,
and we have ∑D

d=1 λl,d = 1 ∀l. Note that phl
(hl) can be treated as the yellow left arrow in Figure 2.

For PBiGAMP’s prior on xn, we align

pxn(xn) =
2A

∑
j=1

γn,jδ(xn − s(j)), (13)

where δ(·) is the Dirac delta, {s(1), . . . , s(2
A)} , S is the data-symbol alphabet, and γn,j = Pr{xn = s(j)}

is the prior data-symbol probability mass function (pmf), which is determined by the coded bit priors
Pr{cn,a = c(j)

a } coming from the soft decoder, that is,
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γn,j , Pr{xn = s(j)} =
2A

∑
j′=1

Pr{xn = s(j), cn = c(j′)} (14)

=
2A

∑
j′=1

Pr{xn = s(j) | cn = c(j′)}︸ ︷︷ ︸
δj−j′

Pr{cn = c(j′)} (15)

= Pr{cn = c(j)} =
A

∏
a=1

Pr{cn,a = c(j)
a }, (16)

where c(j) = [c(j)
1 , . . . , c(j)

A ]T ∈ {0, 1}A is the coded-bit sequence corresponding to the symbol value
s(j), and δj is the Kronecker delta sequence. Note that pxn(xn) can be treated as the green right arrow
in Figure 2.

For likelihood function pym | zm(ym/zm), we have

pym | zm(ym | zm) =
∫
Q−1(ym)

CN
(
w; zm, σ2

w)dw, (17)

where Q−1(ym) ⊂ C is the region quantized to ym.
As for PBiGAMP quantity z(n,l)

m , due to the fact that the circulant channel matrix can be
decomposed as H = ∑L−1

l=0 hl Jl with the l-circulant delay matrix Jl ∈ {0, 1}M×M, we can rewrite
Equation (3) as

ym = Q
(

L−1

∑
l=0

MK−1

∑
n=0

hlz
(n,l)
m xn + wm

)
, (18)

where we define

z(n,l)
m , [IK ⊗ Jl ]m,n. (19)

We are now ready to design the joint symbol-detection, channel-estimation and decoding
framework based on PBiGAMP. Roughly speaking, messages are passed on the factor graph in Figure 2
from the left to the right and back again, several times, stopping once the messages converge. One such
forward-backward pass will be referred as a “Turbo iteration”. Furthermore, during a single Turbo
iteration, there are multiple internal iterations of message passing within soft PBiGAMP equalization
sub-graphs, which will be referred to as “PBiGAMP iteration”. Finally, SISO decoding sub-graphs may
itself be implemented using message passing with several internal iterations.

Next, we will describe the design of soft PBiGAMP equalization, especially how to deal with
the non-linear procedures from quantized likelihood in Equation (17), discrete symbols’ prior in
Equation (13) and GMM channels’ prior in Equation (12).

As described in Section 3.1, during each PBiGAMP iteration, PBiGMAP treats zm as Gaussian
under large L, K and M, whose mean and variance are denoted by p̂m and νp, respectively, that is,
pzm(zm) = CN (zm; p̂m, νp). Along with the quantized likelihood defined in Equation (17), PBiGAMP
can reach the approximation of the true marginal posterior pdf of zm

pzm | ym
(zm | ym) =

pzm(zm)pym | zm(ym | zm)∫
pzm(zm)pym | zm(ym | zm)dzm

(20)

=
CN (zm; p̂m, νp)

∫
Q−1(ym) CN

(
w; zm, σ2

w)dw∫
CN (zm; p̂m, νp)

∫
Q−1(ym) CN

(
w; zm, σ2

w)dw dzm
. (21)

One can then obtain the minimum mean square error (MMSE) estimate and estimate variance (For the
purpose of low-complexity, we consider the scalar-variance version of PBiGAMP.) of zm via
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ẑm = E[zm | p̂m; νp] =
∫

zm pzm | ym
(zm | ym)dzm, (22)

νz =
1

MK

MK−1

∑
m=0

var[zm | p̂m; νp]︸ ︷︷ ︸
,νz

m

=
1

MK

MK−1

∑
m=0

∫
|zm − ẑm|2 pzm | ym

(zm | ym)dzm. (23)

Note that the real and imaginary part of zm are independent Gaussian with mean p̂Re
m and p̂Im

m ,
respectively, and variance νp

2 . Since Q(·) quantizes the real and imaginary part separately as shown in
Figure 1, we can also separately compute posterior mean and variance of the real and imaginary part
of zm. Denoting the interval of ȳRe

m quantized to yRe
m by (gu−1, gu] ⊂ R, plugging Equation (21) into

Equations (22) and (23) yields the posterior mean and variance of the real part of zm

ẑRe
m = p̂Re

m +
νp

2
DRe

m

ERe
m

, (24)

νz,Re
m =

νp

2
+

FRe
m

ERe
m

(
νp

2

)2

− (ẑRe
m − p̂Re

m )2, (25)

where

DRe
m = N

(
p̂Re

m − gu−1; 0, (σ2
w + νp)/2

)
−N

(
p̂Re

m − gu; 0, (σ2
w + νp)/2

)
, (26)

ERe
m = Φ

(
p̂Re

m − gu−1√
(σ2

w + νp)/2

)
−Φ

(
p̂Re

m − gu−1√
(σ2

w + νp)/2

)
, (27)

FRe
m =

p̂Re
m − gu

(σ2
w + νp)/2

N
(

p̂Re
m − gu; 0, (σ2

w + νp)/2
)

− p̂Re
m − gu−1

(σ2
w + νp)/2

N
(

p̂Re
m − gu−1; 0(σ2

w + νp)/2
)
. (28)

We can obtain the posterior mean and variance of the imaginary part of zm in the similar way by
replacing the superscript “Re” with “Im” in Equations (24)–(28). Finally, combining the real and
imaginary part will lead to the posterior mean and variance of zm

ẑm = ẑRe
m + jẑIm

m , (29)

νz =
1

MK

MK−1

∑
m=0

(
νz,Re

m + νz,im
m
)
. (30)

See Reference [16] (Appendix A) for the further details to derive Equations (24)–(28).
In the sequel, based on {ẑm, νz}, PBiGAMP will produce quantities {r̂l , νr}, such that r̂l behaves

like a white Gaussian noise corrupted version of the true channel tap hl . That is,

r̂l = hl +
√

νre, (31)

where e is a zero-mean Gaussian random variable with unit variance. Based on the above model
Equation (31) and the GMM prior in Equation (12), PBiGAMP can approximate the true posterior pdf
of hl as

phl | rl
(hl | r̂l) =

phl
(hl)prl | hl

(r̂l | hl)∫
phl

(hl)prl | hl
(r̂l | hl)dhl

(32)

=
D

∑
d=1

λ̄l,dCN
(

hl ;
νl,d r̂l

νl,d + νr ,
νl,dνr

νl,d + νr

)
, (33)
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where

λ̄l,d =
λl,dCN (r̂l ; 0, νl,d + νr)

∑D
d′=1 λl,d′CN (r̂l ; 0, νl,d′ + νr)

. (34)

In Equation (32), prl | hl
(r̂l | hl) = CN (hl ; r̂l , νr) can be seen from Equation (31), acting as the likelihood

pdf. Note that prl | hl
(r̂l | hl) = CN (hl ; r̂l , νr) can be interpreted as the product of blue right arrows in

Figure 2. One then can obtain the MMSE estimate and estimate variance of hl via

ĥl = E[hl | r̂l ; νr] =
∫

hl phl | rl
(hl | r̂l)dhl (35)

=
D

∑
d=1

λ̄l,d
νl,d r̂l

νl,d + νr , (36)

νh
l =

1
L

L−1

∑
l=0

var[hl | r̂l ; νr] =
1
L

L−1

∑
l=0

∫
|hl − ĥl |2 phl | rl

(hl | r̂l)dhl (37)

=
1
L

L−1

∑
l=0

[
D

∑
d=1

λ̄l,d

(
νl,dνr

νl,d + νr +
∣∣∣ νl,d r̂l

νl,d + νr

∣∣∣2)− |ĥl |2
]

. (38)

Similarly, PBiGAMP also produces quantities {q̂n, νq}, such that q̂n behaves like a white Gaussian
noise corrupted version of the true symbol xn. That is

q̂n = xn +
√

νqe. (39)

Based on above model and discrete prior on symbols in Equation (13), PBiGAMP then approximate
the true posterior pdf of xn as

pxn | qn
(xn | q̂n) =

pxn(xn)pqn | xn(q̂n | xn)∫
pxn(xn)pqn | xn(q̂n | xn)dxn

(40)

=
2A

∑
j=1

γ̄n,jδ(xn − s(j)), (41)

where

γ̄n,j =
Pr{xn = s(j)}CN

(
s(j); q̂n, νq)

∑2A

j′=1 Pr{xn = s(j′)}CN
(
s(j′); q̂n, νq

) . (42)

In Equation (40), pqn | xn(q̂n | xn) = CN (xn; q̂n, νq) can be seen from Equation (39), acting as the
likelihood pdf. Note that pqn | xn(q̂n | xn) = CN (xn; q̂n, νq) can be interpreted as the product of red left
arrows in Figure 2. One then can obtain the MMSE estimate and estimate variance of xn via

x̂n = E[xn | q̂n; νq] =
∫

xn pxn | qn
(xn | q̂n)dxn (43)

=
2A

∑
j=1

γ̄n,js(j), (44)

νx =
1

MK

MK−1

∑
n=0

var[xn | q̂n; νq] =
1

MK

MK−1

∑
n=0

∫
|xn − x̂n|2 pxn | qn

(xn | q̂n)dxn (45)

=
1

MK

MK−1

∑
n=0

2A

∑
j=1

γ̄n,j|s(j) − x̂n|2. (46)
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Based on the above newly-computed quantities {ĥl , νh} and {x̂n, νx}, PBiGAMP then updates
{ p̂m, νp} and starts the next PBiGAMP iteration.

After the messages within the PBiGAMP equalization sub-graph have converged, PBiGAMP
outputs quantities

q̃n = αq̂n + (1− α)x̂n, (47)

ν̃q = ανq + (1− α)νx, (48)

where {q̂n, νq} and {x̂n, νx} are collected from the latest PBiGAMP iteration, and α is the doping factor
to control the weights of the “extrinsic” component {q̂n, νq} and “posterior” component {x̂n, νx}. Note
that our proposed scheme will reduce to the joint approach proposed in Reference [20] when α = 1,
and soft decoder will accept entire posterior information from soft PBiGAMP equalizer with α = 0.

We then convert {q̃n, ν̃q} into soft probabilities on coded bits via

Pr{cn,a =1 | q̃n, νq} = ∑
j=1...2A |c(j)

a =1

Pr{cn = c(j) | q̃n, ν̃q} (49)

= ∑
j=1...2A |c(j)

a =1

γ̄n,j, (50)

where cn , [cn,1, . . . , cn,A]
T determines the value of data symbol xn, and c(j) = [c(j)

1 , . . . , c(j)
A ]T ∈

{0, 1}A is the coded-bit sequence corresponding to the symbol value s(j). The coded bit posteriors
in Equation (50) are then converted to extrinsic form and passed to the SISO decoder. Finally, SISO
decoder accepts this extrinsic information, treating it as a prior on the coded bits. It then outputs the
posteriors on the coded bits, and converts them to extrinsic form, and updates γn,j = Pr{xn = s(j)}
in Equation (16) for the next Turbo iteration. Since SISO decoding is a well-studied topic [25] and
high-performance implementations are readily available [26], we will not elaborate on the details here.

The PBiGAMP-based soft equalizer procedure is summarized in Box 1, where we use (M ×
K)-matricized versions of p̂, q̂ and x̂, denoted by P̂, Q̂ and X̂, respectively. Note that we ignore
explaining the linear steps in Box 1. Please see Reference [20] for further details. In the table, �means
element-wise product, and index “t′′ means the PBiGAMP iteration number. We also summary the
proposed joint symbol-detection, channel-estimation and decoding scheme in Box 2, where the index
“t̄′′ means Turbo iteration number.
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Box 1. Soft PBiGAMP Equalizer.

Definitions:
pzm |ym

(
z | p̂; νp), pym |zm(ym | z) CN (z;p̂,νp)∫

pym |zm(ym | z′) CN (z′ ;p̂,νp)dz′ (D1)

phl |rl
(h | r̂; νr),

phl
(h) CN (r̂;h,νr)∫

phl
(h′) CN (r̂;h′ ,νr)dh′ (D2)

pxn |qn
(x | q̂; νq), pxn(x) CN (q̂;x,νq)∫

pxn(x′) CN (q̂;x′ ,νq)dx′ (D3)

Initialization:
X̂[1] =OM×K, νx[1] = 1
ĥ[1] = ĥinit, νh[1] = νh

init, Ŝ[0] = 0M×K

For t = 1, . . . Tmax
X̂[t] = FMX̂[t] (L1)

ĥ[t] = F1:L
M ĥ[t] (L2)

ν̄p[t] = νx[t]
∥∥ĥ[t]

∥∥2
+ L

MK νh[t]
∥∥X̂[t]

∥∥2
F (L3)

νp[t] = ν̄p[t] + Lνh[t]νx[t] (L4)

P̂[t] =
√

MFH
MDiag(ĥ[t])X̂[t]− ν̄p[t]Ŝ[t−1] (L5)

νz[t] = 1
MK ∑M−1

m=1 ∑K
k=1 var{zmk | p̂mk[t]; νp[t]} (L6)

∀m, k : ẑmk[t] =E[zmk | pmk = p̂mk[t]; νp[t]] (L7)
νs[t] =

(
1− νz[t]/νp[t]

)
/νp[t] (L8)

Ŝ[t] =
(
Ẑ[t]− P̂[t]

)
/νp[t] (L9)

Ŝ[t] = FMŜ[t] (L10)

νr[t] =
(
νs[t]

∥∥X̂[t]
∥∥2

F

)−1 (L11)

r̂[t] = νr[t]
√

M(F1:L
M )H

(
X̂[t]∗ � Ŝ[t]

)
1K

+
(
1−MKνr[t]νx[t]νs[t]

)
ĥ[t] (L12)

νq[t] =
(
νs[t]

∥∥ĥ[t]
∥∥2)−1 (L13)

Q̂[t] =
√

Mνq[t]FH
MDiag(ĥ[t])HŜ[t]

+
(
1− Lνq[t]νh[t]νs[t]

)
X̂[t] (L14)

νh[t+1] = 1
L ∑L−1

l=0 var{hl | rl = r̂l [t]; νr[t]} (L15)
∀l : ĥl [t+1] =E[hl | rl = r̂l [t]; νr[t]] (L16)

νx[t+1] = 1
MK ∑M−1

m=0 ∑K
k=1 var{xmk | q̂mk[t]; νq[t]} (L17)

∀m, k : x̂mk[t+1] =E[xmk | qmk = q̂mk[t]; νq[t]] (L18)
end

Box 2. The Proposed Joint Symbol-Detection, Channel-Estimation and Decoding Scheme.

For t̄ = 1, . . . Tmax

1 SISO decoder accepts the extrinsic version of Pr{cn,a =1 | q̃n, νq}, and outputs Pr{cn,a = c(j)
a }.

2 PBiGAMP equalizer accepts Pr{cn,a = c(j)
a }, and outputs{q̂n, νq}, {x̂n, νx}and{ĥl , νh}.

3 Obtain{q̃n, ν̃q}viaEquations(47)and(48).
4 Obtain Pr{cn,a =1 | q̃n, νq}viaEquation(50).

end

4. Simulation Results

Before showing the performance evaluation, we now briefly describe the benchmark methods
used later. An alternative approach is to linearize the quantization model Equation (3) based on
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Bussgang’s theorem [27] by introducing additional quantization noise. In this way, Equation (3) can be
approximated as

y = (1− η)(IK ⊗ H)x + w̃, (51)

where η is the normalized mean square error defined as η , E[|Q(ȳ)− ȳ|2]/E[|ȳ|2], which is fixed
under certain quantization resolution. Bussgang’s theorem treats the equivalent noise w̃ as AWGN
with variance σ2

w̃ = (1− η)(ησ2
xE{‖h‖2}+ σ2

w), where σ2
x is symbols’ average transmit power.

Based on above linear model Equation (51), we have two benchmark methods. One is to perform
PBiGAMP directly in this linear model (denotes as “PBiGAMP-Bus”). Compared to the proposed
scheme, changes manifest only in lines (L6)–(L7) of Box 1. The other is to perform pilot-aided
channel estimation firstly. Treating the above channel estimate as the true channel, we then apply
the well-known linear MMSE (LMMSE) equalizer (denoted as “LMMSE-Bus”) (Since the standard
LMMSE equalizer requires matrix inverse, which incurs a complexity of O(KM3) per block of KM
symbols, we adopt the unit-variance approximated version of standard LMMSE equalizer [20],
whose per-symbol complexity is O(log M) using FFT..) We denote our proposed algorithm as
“PBiGAMP α = XX” in the later simulation, and show the performance of the proposed scheme
with PCSI (denoted as “PCSI”) as a reference.

We now describe the simulation setup. Recalling the single-carrier block transmission model
from Section 2.1, Nb = 3584 information bits were coded at rate R = 1/2 by an irregular low-density
parity-check (LDPC) code with average column weight 3. The resulting Nc = 7168 coded bits were
then Gray-mapped to 1792 16-QAM symbols (i.e., A = 4). For the channels, we adopted the 60 GHz
WLAN model [28], where we used the “conference room” scenario at baud rate 1.76 GHz with default
parameter settings. For the quantization precision, we choose b = 3.

We first evaluate the bit error rate (BER) performances versus Eb/No at 10-th Turbo iteration for
different values of doping factor α as depicted in Figure 4. Interestingly, “α = 0.9” trace shows the best
performance, and its BER achieves about 2.1 dB better than that of the worst case “α = 0”, which implies
the great influence of α on receiver performance. Compared to the PBiGAMP receiver [20] (the “α = 1”
trace), “α = 0.9” can also beat it by about 0.4 dB performance gain. We further show the BER
performance versus Turbo iteration number at Eb/No = 12 dB for different values of doping factor α

in Figure 5. Here we see that “α = 0.9” significantly outperforms other traces. We also see that the
BERs will get even worse with the increasing of Turbo iteration when choosing small α that is, 0–0.6.
It is well known that Turbo principle implies to pass extrinsic information to SISO decoder. Here we
introduce the doping factor to mix extrinsic information and posterior information, yielding better
performance. In the mmWave systems with few-bit ADCs, there are deviations between the quantized
receiving signals and unquantized receiving signals. Under this circumstance, introducing additional
noise with certain level can sometimes improve the performance, which is referred as “stochastic
resonance” phenomenon [29,30]. Here in our quantized SC system, we can regard the doping of
posterior information as additional noise to dither the “pure extrinsic” information. In another words,
the doping of posterior information can compensate the deviation from few-bit quantization. We use
the doping factor α to control the level of this additional noise. Through Figures 4 and 5, it can be seen
that small level of additional noise (α = 0.9, 0.8) can help improve the performance.
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Figure 4. BER performance versus Eb/No at 10-th Turbo iteration for different values of α.
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Figure 5. BER performance versus Turbo iteration number at Eb/No = 12 dB for different values of α.

We then pick up the best trace “α = 0.9”, and compare it with PBiGAMP-Bus and LMMSE-Bus
in Figures 6 and 7. The BER performance is shown in Figure 6, where we can see that the BER of
PBiGAMP α = 0.9 is nearly indistinguishable from the PCSI bound, and outperforms about 1.1 dB and
1.3 dB better than that of PBiGAMP-Bus and LMMSE-Bus, respectively. The normalized mean square
error (NMSE) of channel estimation is shown in Figure 7, where the NMSE of PBiGMAMP α = 0.9
achieves about 2 dB and 10 dB better than that of PBiGAMP-Bus and LMMSE-Bus, respectively.
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Figure 6. BER performance versus Eb/No at 10-th Turbo iteration for investigated algorithms.
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Figure 7. Channel estimation NMSE versus Eb/No at 10-th Turbo iteration for investigated algorithms.
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Figure 8. BER performance versus Eb/No at 10-th Turbo iteration of the proposed algorithm under
different quantization precisions.

For the proposed PBiGAMP receiver, we further show the BER performances versus Eb/No

at 10-th Turbo iteration under different quantization precisions in Figure 8 where “inf-bit” denotes
no quantization. As we can see, the BERs get worse with the decrease of quantization precision.
Compared to inf-bit case, the BERs of 4-bit and 3-bit degrade only about 0.2 dB and 0.8 dB, respectively;
the BER of 2-bit case gets about 3.3 dB worse; and the BER of 1-bit case does not work well,
which suggests to adopt stronger encoding or lower-order modulation (i.e., BPSK).

The complexity of the proposed PBiGAMP-based joint scheme is dominated by the DFT matrix
multiplier in (L1), (L2), (L5), (L10), (L12) and (L14) in Box 1, which takes a total of Q(MK log M)

operations per iteration, or Q(log M) operations per symbol per iteration, via FFT. Due to the
similarity between the proposed scheme and PBiGAMP-Bus, the complexity of PBiGAMP-Bus is also
Q(log M) operations per symbol per iteration. As for LMMSE-Bus, since we adopt the unit-variance
approximated version of LMMSE equalizer, whose complexity could reduce to Q(MK log M)

operations per iteration. Overall, the above three algorithms share the same level of complexity.
The details about the number of FFT and the complexity of per-iteration for the four algorithms are
shown in Table 1. Note that since the equalization part of LMMSE-Bus is not a self-iterative algorithm,
we can not compute its per-iteration complexity.
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Table 1. Complexity Comparison Between The Investigated Receivers.

α = 0.9 PBiGAMP in Reference [20] PBiGAMP-Bus LMMSE-Bus

Number of FFT 4K + 2 4K + 2 4K + 2 4K + 1
Per-iteration Complexity Q(MK log M) Q(MK log M) Q(MK log M)

5. Conclusions

In this paper, we considered mmWave single-carrier system under few-bit ADCs quantization,
and proposed a joint symbol detection, channel estimation and decoding scheme based on PBiGAMP
algorithm. Different form the common sense about Turbo equalization, our main contribution relies
on the introduction of doping factor to combine “extrinsic” information and “posterior” information,
which can include the joint approach in Reference [20] as a special case. Simulation results show that
the significant performance gain can be achieved by our proposed scheme. The positive effect of
doping comes from stochastic resonance, where the doping of posterior is regarded as additional noise
to improve performance. Better understanding about the doping factor requires further investigation
and we will study this point in our future work.
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Abbreviations

The following abbreviations are used in this manuscript:

LTE Long Term Evolution
ADC analog-to-digital
PBiGAMP Parameteric bilinear generalized approximate message passing
OFDM orthogonal frequency division multiplexing
SC single-carrier
FDE frequency domain equalization
GAMP generalized approximate message passing
VAMP vector approximate message passing
MIMO multiple input multiple output
PCSI perfect channel state information
FFT fast Fourier transform
pdf probability density function
pmf probability mass function
VGA variable gain amplifier
AGC automatic gain control
RF radio frequency
BP belief propagation
SPA sum-product algorithm
MSE mean square error
AWGN additive white Gaussian noise
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GMM Gaussian mixture model
SISO soft-input and soft-output
LDPC low-density parity-check
MMSE minimum mean square error
LMMSE linear minimum mean square error
BER bit error rate
NMSE normalized mean square error
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