Towards IoT-Aided Human–Robot Interaction Using NEP and ROS: A Platform-Independent, Accessible and Distributed Approach
Abstract
:1. Introduction
2. Background
2.1. Related Work
2.2. Motivations
2.3. What Is NEP?
3. Contributions
3.1. NEP for Python
3.2. NEP for Javascript
3.3. NEP for C#
4. Real-World User Cases
4.1. Children–Robot Interaction and End-User Development
4.2. Human–Robot Interaction on a International Robot Exposition
5. Performance Evaluation
5.1. Research Questions and Experimental Protocol
5.2. Experimental Settings
5.3. Results and Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Coronado, E.; Indurkhya, X.; Venture, G. Robots Meet Children, Development of Semi-Autonomous Control Systems for Children-Robot Interaction in the Wild. In Proceedings of the 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM), Toyonaka, Japan, 3–5 July 2019; pp. 360–365. [Google Scholar]
- Coronado, E.; Mastrogiovanni, F.; Venture, G. Design of a Human-Centered Robot Framework for End-User Programming and Applications. In ROMANSY 22–Robot Design, Dynamics and Control; Springer: Cham, Switzerland, 2019; pp. 450–457. [Google Scholar]
- Simoens, P.; Dragone, M.; Saffiotti, A. The Internet of Robotic Things: A review of concept, added value and applications. Int. J. Adv. Robot. Syst. 2018, 15. [Google Scholar] [CrossRef]
- Tsardoulias, E.; Mitkas, P. Robotic frameworks, architectures and middleware comparison. arXiv 2017, arXiv:1711.06842. [Google Scholar]
- Metta, G.; Fitzpatrick, P.; Natale, L. YARP: Yet another robot platform. Int. J. Adv. Robot. Syst. 2006, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An Open-Source Robot Operating System. 2009. Available online: http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf (accessed on 28 December 2019).
- Gutiérrez, C.S.V.; Juan, L.U.S.; Ugarte, I.Z.; Vilches, V.M. Towards a distributed and real-time framework for robots: Evaluation of ROS 2.0 communications for real-time robotic applications. arXiv 2018, arXiv:1809.02595. [Google Scholar]
- Crick, C.; Jay, G.; Osentoski, S.; Pitzer, B.; Jenkins, O.C. Rosbridge: Ros for non-ros users. In Robotics Research; Springer: Cham, Switzerland, 2017; pp. 493–504. [Google Scholar]
- Ciliberto, C. Connecting YARP to the Web with Yarp.js. Front. Robot. AI 2017, 4, 67. [Google Scholar] [CrossRef] [Green Version]
- Rosbridge Suite. Available online: http://wiki.ros.org/rosbridge_suite (accessed on 28 December 2019).
- Coronado, E.; Mastrogiovanni, F.; Venture, G. Development of Intelligent Behaviors for Social Robots via User-Friendly and Modular Programming Tools. In Proceedings of the 2018 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), Genova, Italy, 27–29 September 2018; pp. 62–68. [Google Scholar]
- Kortenkamp, D.; Simmons, R.; Brugali, D. Robotic systems architectures and programming. In Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 283–306. [Google Scholar]
- Hintjens, P. ZeroMQ: Messaging for Many Applications; O’Reilly Media, Inc.: Sevastopol, CA, USA, 2013. [Google Scholar]
- Sustrik, M. NanoMSG. Available online: https://github.com/nanomsg/nanomsg/blob/master/rfc/sp-ipc-mapping-01.txt (accessed on 28 December 2019).
- Toris, R.; Kammerl, J.; Lu, D.V.; Lee, J.; Jenkins, O.C.; Osentoski, S.; Wills, M.; Chernova, S. Robot web tools: Efficient messaging for cloud robotics. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 4530–4537. [Google Scholar]
- Joseph, L.; Cacace, J. Mastering ROS for Robotics Programming: Design, Build, and Simulate Complex Robots Using the Robot Operating System; Packt Publishing Ltd.: Birmingham, UK, 2018. [Google Scholar]
- Frank, F.; Paraschos, A.; van der Smagt, P. ORC—A Lightweight, Lightning-Fast Middleware. In Proceedings of the 2019 Third IEEE International Conference on Robotic Computing (IRC), Naples, Italy, 25–27 February 2019; pp. 337–343. [Google Scholar]
- Morckos, M.; Karray, F. Axon: A middleware for robotic platforms in an experimental environment. In Robot Intelligence Technology and Applications 2; Springer: Berlin/Heidelberg, Germany, 2014; pp. 911–926. [Google Scholar]
- Aragão, M.; Moreno, P.; Bernardino, A. Middleware Interoperability for Robotics: A RoS–YARP Framework. Front. Robot. AI 2016, 3, 64. [Google Scholar] [CrossRef]
- Metta, G.; Sandini, G.; Vernon, D.; Natale, L.; Nori, F. The iCub humanoid robot: An open platform for research in embodied cognition. In Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, Gaithersburg, MD, USA, 19–21 August 2008; ACM: New York, NY, USA, 2008; pp. 50–56. [Google Scholar]
- Schmidt, D.C. The ADAPTIVE Communication Environment: An Object-Oriented Network Programming Toolkit for Developing Communication Software. 1993. Available online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.8614 (accessed on 28 December 2019).
- Chitic, S.G.; Ponge, J.; Simonin, O. Are middlewares ready for multi-robots systems. In International Conference on Simulation, Modeling, and Programming for Autonomous Robots; Springer: Berlin/Heidelberg, Germany, 2014; pp. 279–290. [Google Scholar]
- Jung, M.; Hinds, P. Robots in the Wild: A Time for More Robust Theories of Human-Robot Interaction. ACM Trans. Hum.-Robot. Interact. 2018, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Shiizuka, H.; Hashizume, A. The role of Kansei/affective engineering and its expected in aging society. In Intelligent Decision Technologies; Springer: Berlin/Heidelberg, Germany, 2011; pp. 329–339. [Google Scholar]
- Bannon, L. Reimagining HCI: Toward a more human-centered perspective. Interactions 2011, 18, 50–57. [Google Scholar] [CrossRef]
- Barricelli, B.R.; Cassano, F.; Fogli, D.; Piccinno, A. End-user development, end-user programming and end-user software engineering: A systematic mapping study. J. Syst. Softw. 2019, 149, 101–137. [Google Scholar] [CrossRef]
- Glas, D.; Satake, S.; Kanda, T.; Hagita, N. An interaction design framework for social robots. In Robotics: Science and Systems; MIT Press: Cambridge, MA, USA, 2012; p. 89. [Google Scholar]
- Paternò, F.; Wulf, V. New Perspectives in End-User Development; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Jaimes, A.; Sebe, N.; Gatica-Perez, D. Human-centered computing: A multimedia perspective. In Proceedings of the 14th ACM International Conference on Multimedia, Santa Barbara, CA, USA, 23–27 October 2006; pp. 855–864. [Google Scholar]
- Sun, X.; Houssin, R.; Renaud, J.; Gardoni, M. A review of methodologies for integrating human factors and ergonomics in engineering design. Int. J. Prod. Res. 2019, 57, 4961–4976. [Google Scholar] [CrossRef]
- Rosenthal-von der Pütten, A.M.; Weiss, A.; Šabanović, S. The challenge (not) to go wild! Challenges and Best Practices to Study HRI in Natural Interaction Settings. In Proceedings of the 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Christchurch, New Zealand, 7–10 March 2016; pp. 583–584. [Google Scholar]
- Keras: The Python Deep Learning Library. Available online: https://keras.io/ (accessed on 25 February 2019).
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Bergstra, J.; Bastien, F.; Breuleux, O.; Lamblin, P.; Pascanu, R.; Delalleau, O.; Desjardins, G.; Warde-Farley, D.; Goodfellow, I.; Bergeron, A.; et al. Theano: Deep learning on gpus with python. J. Mach. Learn. Res. 2011, 3, 1–48. [Google Scholar]
- Rebelo Moreira, J.L.; Ferreira Pires, L.; Van Sinderen, M. Semantic Interoperability for the IoT: Analysis of JSON for Linked Data; Wiley: Berlin, Germany, 2018; pp. 163–169. [Google Scholar]
- Douzis, K.; Sotiriadis, S.; Petrakis, E.G.; Amza, C. Modular and Generic IoT Management on the Cloud. Future Gener. Comput. Syst. 2018, 78, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, P.; Alam, M. Investigating IoT Middleware Platforms for Smart Application Development. arXiv 2018, arXiv:1810.12292. [Google Scholar]
- Ray, P.P. Internet of robotic things: Concept, technologies, and challenges. IEEE Access 2016, 4, 9489–9500. [Google Scholar] [CrossRef]
- Dworak, A.; Ehm, F.; Charrue, P.; Sliwinski, W. The new cern controls middleware. J. Phys. Conf. Ser. 2012, 396, 12017. [Google Scholar] [CrossRef] [Green Version]
- Al-Turany, M.; Buncic, P.; Hristov, P.; Kollegger, T.; Kouzinopoulos, C.; Lebedev, A.; Lindenstruth, V.; Manafov, A.; Richter, M.; Rybalchenko, A.; et al. ALFA: The new ALICE-FAIR software framework. J. Phys. Conf. Ser. 2015, 664, 072001. [Google Scholar] [CrossRef]
- Mirabito, L. ZDAQ, a light data acquisition framework based on ZeroMQ. J. Instrum. 2019, 14, C10007. [Google Scholar] [CrossRef]
- Babaians, E.; Tamiz, M.; Sarti, Y.; Mogoei, A.; Mehrabi, E. ROS2Unity3D; High-Performance Plugin to Interface ROS with Unity3d engine. In Proceedings of the 2018 9th Conference on Artificial Intelligence and Robotics and 2nd Asia-Pacific International Symposium, Kish Island, Iran, 10 December 2018; pp. 59–64. [Google Scholar]
- Operating System Share by Version. Available online: https://netmarketshare.com/operating-system-market-share.aspx?id=platformsDesktopVersions (accessed on 28 December 2019).
- ZeroMQ Message Transport Protocol. Available online: https://rfc.zeromq.org/spec/15/ (accessed on 28 December 2019).
- Kuffner, J. Cloud-enabled robots. In Proceedings of the 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, 6–8 December 2010; IEEE: Piscataway, NJ, USA, 2010. [Google Scholar]
- Kehoe, B.; Patil, S.; Abbeel, P.; Goldberg, K. A survey of research on cloud robotics and automation. IEEE Trans. Autom. Sci. Eng. 2015, 12, 398–409. [Google Scholar] [CrossRef]
- Mohanarajah, G.; Hunziker, D.; D’Andrea, R.; Waibel, M. Rapyuta: A cloud robotics platform. IEEE Trans. Autom. Sci. Eng. 2014, 12, 481–493. [Google Scholar] [CrossRef] [Green Version]
- Beetz, M.; Tenorth, M.; Winkler, J. Open-ease. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 1983–1990. [Google Scholar]
- Pattar, S.P.; Coronado, E.; Ardila, L.R.; Venture, G. Intention and Engagement Recognition for Personalized Human-Robot Interaction, an integrated and Deep Learning approach. In Proceedings of the 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM), Toyonaka, Japan, 3–5 July 2019; pp. 93–98. [Google Scholar]
- Fankhauser, P.; Bloesch, M.; Rodriguez, D.; Kaestner, R.; Hutter, M.; Siegwart, R. Kinect v2 for mobile robot navigation: Evaluation and modeling. In Proceedings of the 2015 International Conference on Advanced Robotics (ICAR), Istanbul, Turkey, 27–31 July 2015; pp. 388–394. [Google Scholar]
- Andaluz, V.H.; Quevedo, W.X.; Chicaiza, F.A.; Varela, J.; Gallardo, C.; Sánchez, J.S.; Arteaga, O. Transparency of a bilateral tele-operation scheme of a mobile manipulator robot. In Proceedings of the International Conference on Augmented Reality, Virtual Reality and Computer Graphics, Lecce, Italy, 15–18 June 2016; pp. 228–245. [Google Scholar]
- Bartneck, C.; Soucy, M.; Fleuret, K.; Sandoval, E.B. The robot engine—Making the unity 3D game engine work for HRI. In Proceedings of the 2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Kobe, Japan, 31 August–4 September 2015; pp. 431–437. [Google Scholar]
- Pakrasi, I.; Chakraborty, N.; LaViers, A. A design methodology for abstracting character archetypes onto robotic systems. In Proceedings of the 5th International Conference on Movement and Computing, New York, NY, USA, 28 June 2018; p. 24. [Google Scholar]
- Segura, M.E.; Coronado, E.; Maya, M.; Cardenas, A.; Piovesan, D. Analysis of recoverable falls via Microsoft Kinect: Identification of third-order ankle dynamics. J. Dyn. Syst. Meas. Contr. 2016, 138, 091006. [Google Scholar] [CrossRef]
- Json.NET. Available online: https://www.newtonsoft.com/json (accessed on 28 December 2019).
- Zubrycki, I.; Kolesiński, M.; Granosik, G. Graphical Programming Interface for Enabling Non-technical Professionals to Program Robots and Internet-of-Things Devices; Springer: Cadiz, Spain, 2017; pp. 620–631. [Google Scholar]
- Fischer, G. End-User Development: From Creating Technologies to Transforming Cultures; Springer: Berlin/Heidelberg, Germany, 2013; pp. 217–222. [Google Scholar]
- Fischer, G. End user development and meta-design: Foundations for cultures of participation. In End-User Computing, Development, and Software Engineering: New Challenges; IGI Global: Berlin, Germany, 2012; pp. 202–226. [Google Scholar]
- Lourens, T. Examples How to Use TiViPE. Available online: http://www.tivipe.com/TVPeducation/TVPuse.pdf (accessed on 28 December 2019).
- Barakova, E.I.; Gillesen, J.C.; Huskens, B.E.; Lourens, T. End-user programming architecture facilitates the uptake of robots in social therapies. Robot. Autom. Syst. 2013, 61, 704–713. [Google Scholar] [CrossRef]
- IREX International Robot Exhibition 2019. Available online: https://biz.nikkan.co.jp/eve/irex/english/ (accessed on 15 December 2019).
- Maruyama, Y.; Kato, S.; Azumi, T. Exploring the performance of ROS2. In Proceedings of the 13th International Conference on Embedded Software, Pittsburgh, PA, USA, 2–7 October 2016; pp. 1–10. [Google Scholar]
- Node Primitives. Available online: https://enriquecoronadozu.github.io/NEP/ (accessed on 15 December 2019).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coronado, E.; Venture, G. Towards IoT-Aided Human–Robot Interaction Using NEP and ROS: A Platform-Independent, Accessible and Distributed Approach. Sensors 2020, 20, 1500. https://doi.org/10.3390/s20051500
Coronado E, Venture G. Towards IoT-Aided Human–Robot Interaction Using NEP and ROS: A Platform-Independent, Accessible and Distributed Approach. Sensors. 2020; 20(5):1500. https://doi.org/10.3390/s20051500
Chicago/Turabian StyleCoronado, Enrique, and Gentiane Venture. 2020. "Towards IoT-Aided Human–Robot Interaction Using NEP and ROS: A Platform-Independent, Accessible and Distributed Approach" Sensors 20, no. 5: 1500. https://doi.org/10.3390/s20051500