# A Weigh-in-Motion Characterization Algorithm for Smart Pavements Based on Conductive Cementitious Materials

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Smart Pavement-Based Weigh-In-Motion System

#### Measurement Principle

## 3. Algorithm for WIM Characterization

- Identification of weights, time shifts, and number of axles from the signal collected in the initial pavement section by minimizing Equation (10);
- Reconstruction of the signal (Equation (9)) from the initial pavement section;
- Temporal identification of vehicle through the computation of correlation between the reconstructed signal and the measured signal from the subsequent pavement sections; and
- Determination of vehicle speed through the averaging of temporal identification data.

## 4. Numerical Simulations

#### 4.1. Numerical Model

#### 4.2. Results and Discussion

#### 4.2.1. Results of WIM

#### 4.2.2. Noise Study

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Jacob, B.; de La Beaumelle, V.F. Improving truck safety: Potential of weigh-in-motion technology. IATSS Res.
**2010**, 34, 9–15. [Google Scholar] [CrossRef] [Green Version] - Guo, T.; Frangopol, D.M.; Chen, Y. Fatigue reliability assessment of steel bridge details integrating weigh-in-motion data and probabilistic finite element analysis. Comput. Struct.
**2012**, 112, 245–257. [Google Scholar] [CrossRef] - Li, Z.; Chan, T.; Ko, J. Fatigue analysis and life prediction of bridges with structural health monitoring data— Part I: Methodology and strategy. Int. J. Fatigue
**2001**, 23, 45–53. [Google Scholar] [CrossRef] - Rys, D.; Judycki, J.; Jaskula, P. Analysis of effect of overloaded vehicles on fatigue life of flexible pavements based on weigh in motion (WIM) data. Int. J. Pavement Eng.
**2016**, 17, 716–726. [Google Scholar] [CrossRef] - Zhou, H.; Liu, K.; Shi, G.; Wang, Y.; Shi, Y.; Roeck, G.D. Fatigue assessment of a composite railway bridge for high speed trains. Part I: Modeling and fatigue critical details. J. Constr. Steel Res.
**2013**, 82, 234–245. [Google Scholar] [CrossRef] - Klein, L.A. Sensor Technologies and Data Requirements for ITS; Artech House Publishers: Norwood, MA, USA, 2001. [Google Scholar]
- Burnos, P.; Gajda, J. Thermal property analysis of axle load sensors for weighing vehicles in weigh-in-motion system. Sensors
**2016**, 16, 2143. [Google Scholar] [CrossRef] - Zhao, H.; Uddin, N. Algorithm to identify axle weights for an innovative BWIM system. Part II. In Proceedings of the IABSE-JSCE Joint Conf. on Advances in Bridge Engineering-II, Bangladesh Association of Consulting Engineers and Bangladesh Association of Construction Industry, Dhaka, Bangladesh, 8–10 August 2010; Volume 537, p. 546. [Google Scholar]
- Xue, W.J.; Wang, D.; Wang, L.B. A review and perspective about pavement monitoring. Int. J. Pavement Res. Technol.
**2012**, 5, 295–302. [Google Scholar] - Altawim, M.; Alahmadi, A.; Bonais, M.; Soh, B.; Algarni, F. Radar Vehicle Detector Mote. Int. J. Enhanc. Res. Sci. Technol.
**2013**, 2–3, MARCH-2013. [Google Scholar] - Qin, T.; Lin, M.; Cao, M.; Fu, K.; Ding, R. Effects of Sensor Location on Dynamic Load Estimation in Weigh-in-Motion System. Sensors
**2018**, 18, 3044. [Google Scholar] [CrossRef] [Green Version] - Yu, Y.; Cai, C.; Deng, L. State-of-the-art review on bridge weigh-in-motion technology. Adv. Struct. Eng.
**2016**, 19, 1514–1530. [Google Scholar] [CrossRef] - Richardson, J.; Jones, S.; Brown, A.; O’Brien, E.J.; Hajializadeh, D. On the use of bridge weigh-in-motion for overweight truck enforcement. Int. J. Heavy Veh. Syst.
**2014**, 21, 83–104. [Google Scholar] [CrossRef] - Moses, F. Weigh-in-motion system using instrumented bridges. J. Transp. Eng.
**1979**, 105, 222–235. [Google Scholar] - Rowley, C.; Gonzalez, A.; O’Brien, E.; Znidaric, A. Comparison of conventional and regularized bridge weigh-in-motion algorithms. In Proceedings of the International Conference on Heavy Vehicles, Paris, France, 19–22 May 2008; pp. 19–22. [Google Scholar]
- Leming, S.K.; Stalford, H.L. Bridge weigh-in-motion system development using superposition of dynamic truck/static bridge interaction. In Proceedings of the 2003 American Control Conference, Denver, CO, USA, 4–6 June 2003; Volume 1, pp. 815–820. [Google Scholar]
- McCrum, D.; O’Brien, E.; Khan, M. Bridge Health Monitoring Using an Acceleration-Based Bridge Weigh-in-Motion System. Key Eng. Mater.
**2013**, 569, 183–190. [Google Scholar] - O’Brien, E.; Žnidarič, A.; Ojio, T. Bridge weigh-in-motion – latest developments and applications world wide. In International Conference on Heavy Vehicles HVParis 2008; John Wiley and Sons: Hoboken, NJ, USA, 2013; pp. 39–56. [Google Scholar]
- Law, S.; Zhu, X. Study on different beam models in moving force identification. J. Sound Vib.
**2000**, 234, 661–679. [Google Scholar] [CrossRef] - Ojio, T.; H Carey, C.; O’Brien, E.; Doherty, C.; Taylor, S. Contactless Bridge Weigh-in-Motion. J. Bridge Eng.
**2015**, 21, 04016032. [Google Scholar] [CrossRef] [Green Version] - Otto, G.G.; Simonin, J.M.; Piau, J.M.; Cottineau, L.M.; Chupin, O.; Momm, L.; Valente, A.M. Weigh-in-motion (WIM) sensor response model using pavement stress and deflection. Constr. Build. Mater.
**2017**, 156, 83–90. [Google Scholar] [CrossRef] [Green Version] - Chen, S.Z.; Wu, G.; Feng, D.C.; Zhang, L. Development of a bridge weigh-in-motion system based on long-gauge fiber Bragg grating sensors. J. Bridge Eng.
**2018**, 23, 04018063. [Google Scholar] [CrossRef] - Bernardo, F.; De Fazio, P.; Grandizio, F.; Grieco, M.; Montesano, G. Monitoring of the mechanical behavior of a composite material with high performance by fbg sensors. In Proceedings of the 17th European Conference on Composite Materials, Germany, Munich, 1 January 2016. [Google Scholar]
- Mimbela, L.E.Y.; Pate, J.; Copeland, S.; Kent, P.M.; Hamrick, J. Applications of Fiber Optics Sensors in Weigh-in-Motion (WIM) Systems for Monitoring Truck Weights on Pavements and Structures; Technical Report; New Mexico Department of Transportation: Albuquerque, NM, USA, 2003.
- Liu, C.; Guo, L.; Li, J.; Chen, X. Weigh-in-motion (WIM) sensor based on EM resonant measurements. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Honolulu, HI, USA, 9–15 June 2007; pp. 561–564. [Google Scholar]
- Laflamme, S.; Eisenmann, D.; Wang, K.; Ubertini, F.; Pinto, I.; DeMoss, A. Smart Concrete for Enhanced Nondestructive Evaluation. Mater. Eval.
**2018**, 76, 1395–1404. [Google Scholar] - D’Alessandro, A.; Ubertini, F.; Laflamme, S.; Materazzi, A. Towards smart concrete for smart cities: Recent results and future application of strain-sensing nanocomposites. J. Smart Cities
**2015**, 1, 1–12. [Google Scholar] [CrossRef] [Green Version] - Rajaram, M.L.; Kougianos, E.; Mohanty, S.P.; Sundaravadivel, P. A wireless sensor network simulation framework for structural health monitoring in smart cities. In Proceedings of the IEEE 6th International Conference on Consumer Electronics - Berlin (ICCE-Berlin), Berlin, Germany, 5–7 September 2016; pp. 78–82. [Google Scholar]
- Du, H.; Quek, S.T.; Pang, S.D. Smart multifunctional cement mortar containing graphite nanoplatelet. Proc. SPIE
**2013**, 8692, 869238. [Google Scholar] - Li, H.; Xiao, H.; Ou, J. Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites. Cem. Concr. Compos.
**2006**, 28, 824–828. [Google Scholar] [CrossRef] - Han, B.; Yu, X.; Kwon, E.; Ou, J. Piezoresistive Multi-Walled Carbon Nanotubes Filled Cement-Based Composites. Sens. Lett.
**2010**, 8, 344–348. [Google Scholar] [CrossRef] - Yu, X.; Kwon, E. Carbon-nanotube/cement composite with piezoresistive property. Smart Mater. Struct.
**2009**, 18, 055010. [Google Scholar] [CrossRef] - D’Alessandro, A.; Ubertini, F.; Laflamme, S.; Rallini, M.; Materazzi, A.L.; Kenny, J.M. Strain sensitivity of carbon nanotube cement-based composites for structural health monitoring. Proc. SPIE
**2016**, 9803. [Google Scholar] - Meoni, A.; D’Alessandro, A.; Downey, A.; García-Macías, E.; Rallini, M.; Materazzi, A.; Torre, L.; Laflamme, S.; Castro-Triguero, R.; Ubertini, F. An Experimental Study on Static and Dynamic Strain Sensitivity of Embeddable Smart Concrete Sensors Doped with Carbon Nanotubes for SHM of Large Structures. Sensors
**2018**, 18, 831. [Google Scholar] [CrossRef] [Green Version] - D’Alessandro, A.; Ubertini, F.; García-Macías, E.; Castro-Triguero, R.; Downey, A.; Laflamme, S.; Meoni, A.; Materazzi, A. Static and Dynamic Strain Monitoring of Reinforced Concrete Components through Embedded Carbon Nanotube Cement-Based Sensors. Shock Vib.
**2017**, 2017, 1–11. [Google Scholar] [CrossRef] - Bonner, J.C. Carbon nanotubes as delivery systems for respiratory disease: Do the dangers outweigh the potential benefits? Expert Rev. Respir. Med.
**2011**, 5, 779–787. [Google Scholar] [CrossRef] - Han, B.; Zhang, L.; Sun, S.; Yu, X.; Dong, X.; Wu, T.; Ou, J. Electrostatic self-assembled carbon nanotube/nano carbon black composite fillers reinforced cement-based materials with multifunctionality. Compos. Part A Appl. Sci. Manuf.
**2015**, 79, 103–115. [Google Scholar] [CrossRef] - D’Alessandro, A.; Rallini, M.; Ubertini, F.; Materazzi, A.; Kenny, J.; Laflamme, S. A comparative study between carbon nanotubes and carbon nanofibers as nanoinclusions in self-sensing concrete. In Proceedings of the IEEE 15th International Conference on Nanotechnology (IEEE-NANO), Rome, Italy, 27–30 July 2015; pp. 698–701. [Google Scholar]
- Fan, X.; Fang, D.; Sun, M.; Li, Z. Piezoresistivity of carbon fiber graphite cement-based composites with CCCW. J. Wuhan Univ. Technol.-Mater. Sci. Ed.
**2011**, 26, 339. [Google Scholar] [CrossRef] - Lechner, B.; Lieschnegg, M.; Mariani, O.; Pircher, M.; Fuchs, A. A wavelet-based bridge weigh-in-motion system. Int. J. Smart Sens. Intell. Syst.
**2010**, 3. [Google Scholar] [CrossRef] [Green Version] - Chatterjee, P.; O’Brien, E.; Li, Y.; González, A. Wavelet domain analysis for identification of vehicle axles from bridge measurements. Comput. Struct.
**2006**, 84, 1792–1801. [Google Scholar] [CrossRef] [Green Version] - González, A.; Papagiannakis, A.T.; O’Brien, E.J. Evaluation of an artificial neural network technique applied to multiple-sensor weigh-in-motion systems. Transp. Res. Rec.
**2003**, 1855, 151–159. [Google Scholar] [CrossRef] - Zhaojing, T.; Xiuhua, S.; Qunpo, L.; Dahu, W. Weigh-in-motion based on multi-sensor and RBF neural network. In Proceedings of the International Conference on Electric Information and Control Engineering, Wuhan, China, 15–17 April 2011; pp. 944–947. [Google Scholar]
- Flood, I. Developments in Weigh-in-Motion Using Neural Nets. Comput. Civ. Build. Eng.
**2000**, 2, 1133–1140. [Google Scholar] - Yan, L.; Fraser, M.; Elgamal, A.W.; Fountain, T.; Oliver, K. Neural Networks and Principal Components Analysis for Strain-Based Vehicle Classification. J. Comput. Civ. Eng.
**2008**, 22. [Google Scholar] [CrossRef] - Jeng, S.T.C.; Ritchie, S.G. Real-Time Vehicle Classification Using Inductive Loop Signature Data. Transp. Res. Rec.
**2008**, 2086, 8–22. [Google Scholar] [CrossRef] - Meta, S.; Cinsdikici, M.G. Vehicle-Classification Algorithm Based on Component Analysis for Single-Loop Inductive Detector. IEEE Trans. Veh. Technol.
**2010**, 59, 2795–2805. [Google Scholar] [CrossRef] - Liu, H.; Tok, Y.C.A.; Ritchie, S.G. Development of a real-time on-road emissions estimation and monitoring system. In Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, DC, USA, 5–7 October 2011; pp. 1821–1826. [Google Scholar] [CrossRef]
- Hernandez, S.V.; Tok, A.; Ritchie, S.G. Integration of Weigh-in-Motion (WIM) and inductive signature data for truck body classification. Transp. Res. Part C Emerg. Technol.
**2016**, 68, 1–21. [Google Scholar] [CrossRef] - European Committee for Standardisation. EN 1991-2: Eurocode 1: Actions on Structures - Part 2: Traffic Loads on Bridges; European Committee for Standardisation: Brussels, Belgium, 2003. [Google Scholar]
- Pisello, A.L.; D’Alessandro, A.; Sambuco, S.; Rallini, M.; Ubertini, F.; Asdrubali, F.; Materazzi, A.L.; Cotana, F. Multipurpose experimental characterization of smart nanocomposite cement-based materials for thermal-energy efficiency and strain-sensing capability. Sol. Energy Mater. Sol. Cells
**2017**, 161, 77–88. [Google Scholar] [CrossRef] - Ariyur, K.; Krstic, M. Real-Time Optimization by Extremum-Seeking Control; Wiley-Interscience Publication: Hoboken, NJ, USA, 2003. [Google Scholar]
- Smith, M. ABAQUS/Standard User’s Manual, Version 6.9; Dassault Systèmes Simulia Corp: Providence, RI, USA, 2009. [Google Scholar]
- García-Macías, E.; Castro-Triguero, R.; Sáez, A.; Ubertini, F. 3D mixed micromechanics-FEM modeling of piezoresistive carbon nanotube smart concrete. Comput. Methods Appl. Mech. Eng.
**2018**, 340, 396–423. [Google Scholar] [CrossRef]

**Figure 1.**Smart pavement-based weigh-in-motion (WIM) system illustrating (

**a**) the integrated smart pavement within the bridge system; and (

**b**) the electrical principle.

**Figure 2.**Illustration of the piezoresistive material with two different electrode configuration showing the orientation of mechanical stresses $\sigma $: (

**a**) electrode setup adapted from [51]; and (

**b**) smart pavement segment between two consecutive electrodes.

**Figure 3.**(

**a**) The unloaded and loaded (at time t) voltage distributions across electrodes (

**a**) for the axle located between the 1st and 4th electrodes; and (

**b**) for the axle located between the 4th and 6th electrodes. (

**c**) Typical basis signal $\psi \left(t\right)$ obtained from the passing of an axle.

**Figure 4.**Comparison of low and high frequency components of a typical signal: (

**a**) time domain; and (

**b**) frequency domain.

**Figure 5.**Basis signal search procedure: (

**a**) normalization and matching of the signals to find the first basis signal ${\mathbf{H}}_{1}{\psi}_{1}^{H}$; (

**b**) matching of remaining signal to find the second basis signal ${\mathbf{H}}_{2}{\psi}_{2}^{H}$; (

**c**) visualization of time shift operators ${H}_{1}$ and ${H}_{2}$, and scale factors ${a}_{1}$ and ${a}_{2}$; and (

**d**) reconstructed signal.

**Figure 6.**(

**a**) Finite element model (FEM) of the bridge showing the change in potential along smart pavement sections, where smart pavement sections are under a charge of 30V, and (

**b**) analytical versus numerical influence lines for the Von Mises Stress at the end of the bridge.

**Figure 7.**Weight estimations for the first simulation case; (

**a**) type 1 truck; (

**b**) type 2 truck; and (

**c**) type 3 truck.

**Figure 9.**Axle span-to-vehicle length estimation errors (with +/- standard deviation intervals) as functions of noise level for: (

**a**) type 1 truck; (

**b**) type 2 truck; and (

**c**) type 3 truck.

**Figure 10.**Mean weight estimation error (with +/- standard deviation intervals) as functions of noise level for: (

**a**) type 1 truck; (

**b**) type 2 truck; and (

**c**) type 3 truck.

**Figure 11.**Mean speed estimation error (with +/- standard deviation intervals) as functions of noise level for: (

**a**) type 1 truck; (

**b**) type 2 truck; and (

**c**) type 3 truck.

**Table 1.**Cross-correlation tables of the estimated signals (${\widehat{\mathsf{\Psi}}}^{H}$) against measured signals (${\mathsf{\Psi}}^{H}$) from each pavement section (P1 to P3) under the first simulation case for each type of truck:

Type 1 | ${\mathbf{\Psi}}_{\mathit{P}\mathbf{1}}^{\mathit{H}}$ | ${\mathbf{\Psi}}_{\mathit{P}\mathbf{2}}^{\mathit{H}}$ | ${\mathbf{\Psi}}_{\mathit{P}\mathbf{3}}^{\mathit{H}}$ | Type 2 | ${\mathbf{\Psi}}_{\mathit{P}\mathbf{1}}^{\mathit{H}}$ | ${\mathbf{\Psi}}_{\mathit{P}\mathbf{2}}^{\mathit{H}}$ | ${\mathbf{\Psi}}_{\mathit{P}\mathbf{3}}^{\mathit{H}}$ | Type 3 | ${\mathbf{\Psi}}_{\mathit{P}\mathbf{1}}^{\mathit{H}}$ | ${\mathbf{\Psi}}_{\mathit{P}\mathbf{2}}^{\mathit{H}}$ | ${\mathbf{\Psi}}_{\mathit{P}\mathbf{3}}^{\mathit{H}}$ |
---|---|---|---|---|---|---|---|---|---|---|---|

${\widehat{\mathsf{\Psi}}}_{P1}^{H}$ | 1.00 | 0.91 | 0.48 | ${\widehat{\mathsf{\Psi}}}_{P1}^{H}$ | 1.00 | 0.95 | 0.53 | ${\widehat{\mathsf{\Psi}}}_{P1}^{H}$ | 1.00 | 0.97 | 0.35 |

${\widehat{\mathsf{\Psi}}}_{P2}^{H}$ | 0.74 | 1.00 | 0.63 | ${\widehat{\mathsf{\Psi}}}_{P2}^{H}$ | 0.73 | 1.00 | 0.70 | ${\widehat{\mathsf{\Psi}}}_{P2}^{H}$ | 0.69 | 1.00 | 0.70 |

${\widehat{\mathsf{\Psi}}}_{P3}^{H}$ | 0.43 | 0.54 | 1.00 | ${\widehat{\mathsf{\Psi}}}_{P3}^{H}$ | 0.66 | 0.57 | 1.00 | ${\widehat{\mathsf{\Psi}}}_{P3}^{H}$ | 0.25 | 0.44 | 1.00 |

**Table 2.**WIM simulation inputs and outputs, listing results for the estimation of axle spacings (axle sp) and axle weights (axle w), along with the percentage estimation error (err)).

Simulation Input | Simulation Output | |||||||||
---|---|---|---|---|---|---|---|---|---|---|

Eurocode | simulation case 1 | simulation case 2 | ||||||||

axle sp | axle w | axle sp | err | axle w | err | axle sp | err | axle w | err | |

(m) | (kN) | (m) | (%) | (kN) | (%) | (m) | (%) | (kN) | (%) | |

type 1 | 4.5 | 90 | 4.5 | 0 | 90 | 0 | 4.5 | 0 | 81 | 10 |

190 | 196 | 3 | 177 | 7 | ||||||

type 2 | 4.2 | 80 | 4 | 4 | 77 | 4 | 4.5 | 7 | 93 | 16 |

1.3 | 140 | 1.5 | 15 | 125 | 10 | 1 | 23 | 162 | 15 | |

140 | 155 | 10 | 115 | 17 | ||||||

type 3 | 3.2 | 90 | 3 | 6 | 91 | 1 | ||||

5.2 | 180 | 5.5 | 6 | 171 | 5 | |||||

1.3 | 120 | 2 | 53 | 148 | 23 | |||||

1.3 | 120 | 1.5 | 15 | 158 | 32 | |||||

120 | 46 | 62 |

**Table 3.**Cross-correlation tables of the estimated signals (${\widehat{\mathsf{\Psi}}}^{H}$) against measured signals (${\mathsf{\Psi}}^{H}$) from each pavement section (P1 to P3) for the three types of trucks under $\alpha =$ 2.5%, 10%, and 20% levels of noise.

$\mathit{\alpha}=2.5\%$ | $\mathit{\alpha}=10\%$ | $\mathit{\alpha}=20\%$ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|

${\mathbf{\Psi}}_{\mathit{P}\mathbf{1}}^{\mathit{H}}$ | ${\mathbf{\Psi}}_{\mathit{P}\mathbf{2}}^{\mathit{H}}$ | ${\mathbf{\Psi}}_{\mathit{P}\mathbf{3}}^{\mathit{H}}$ | ${\mathbf{\Psi}}_{\mathit{P}\mathbf{1}}^{\mathit{H}}$ | ${\mathbf{\Psi}}_{\mathit{P}\mathbf{2}}^{\mathit{H}}$ | ${\mathbf{\Psi}}_{\mathit{P}\mathbf{3}}^{\mathit{H}}$ | ${\mathbf{\Psi}}_{\mathit{P}\mathbf{1}}^{\mathit{H}}$ | ${\mathbf{\Psi}}_{\mathit{P}\mathbf{2}}^{\mathit{H}}$ | ${\mathbf{\Psi}}_{\mathit{P}\mathbf{3}}^{\mathit{H}}$ | ||

${\widehat{\mathsf{\Psi}}}_{P1}^{H}$ | 1.00 | 0.91 | 0.48 | 1.00 | 0.96 | 0.46 | 0.73 | 1.00 | 0.91 | |

Type 1 | ${\widehat{\mathsf{\Psi}}}_{P2}^{H}$ | 0.72 | 1.00 | 0.66 | 0.73 | 1.00 | 0.48 | 1.00 | 0.75 | 0.65 |

${\widehat{\mathsf{\Psi}}}_{P3}^{H}$ | 0.42 | 0.50 | 1.00 | 0.31 | 0.47 | 1.00 | 0.40 | 0.47 | 1.00 | |

${\widehat{\mathsf{\Psi}}}_{P1}^{H}$ | 1.00 | 0.95 | 0.53 | 1.00 | 0.99 | 0.53 | 1.00 | 0.90 | 0.44 | |

Type 2 | ${\widehat{\mathsf{\Psi}}}_{P2}^{H}$ | 0.73 | 1.00 | 0.70 | 0.75 | 1.00 | 0.68 | 0.80 | 1.00 | 0.94 |

${\widehat{\mathsf{\Psi}}}_{P3}^{H}$ | 0.66 | 0.57 | 1.00 | 0.57 | 0.60 | 1.00 | 0.49 | 0.61 | 1.00 | |

${\widehat{\mathsf{\Psi}}}_{P1}^{H}$ | 1.00 | 0.97 | 0.35 | 1.00 | 0.98 | 0.43 | 1.00 | 0.78 | 0.12 | |

Type 3 | ${\widehat{\mathsf{\Psi}}}_{P2}^{H}$ | 0.69 | 1.00 | 0.70 | 0.78 | 1.00 | 0.64 | 0.86 | 1.00 | 0.26 |

${\widehat{\mathsf{\Psi}}}_{P3}^{H}$ | 0.25 | 0.44 | 1.00 | 0.19 | 0.42 | 1.00 | 0.31 | 0.28 | 1.00 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Birgin, H.B.; Laflamme, S.; D’Alessandro, A.; Garcia-Macias, E.; Ubertini, F.
A Weigh-in-Motion Characterization Algorithm for Smart Pavements Based on Conductive Cementitious Materials. *Sensors* **2020**, *20*, 659.
https://doi.org/10.3390/s20030659

**AMA Style**

Birgin HB, Laflamme S, D’Alessandro A, Garcia-Macias E, Ubertini F.
A Weigh-in-Motion Characterization Algorithm for Smart Pavements Based on Conductive Cementitious Materials. *Sensors*. 2020; 20(3):659.
https://doi.org/10.3390/s20030659

**Chicago/Turabian Style**

Birgin, Hasan Borke, Simon Laflamme, Antonella D’Alessandro, Enrique Garcia-Macias, and Filippo Ubertini.
2020. "A Weigh-in-Motion Characterization Algorithm for Smart Pavements Based on Conductive Cementitious Materials" *Sensors* 20, no. 3: 659.
https://doi.org/10.3390/s20030659