A Textile Sleeve for Monitoring Oxygen Saturation Using Multichannel Optical Fibre Photoplethysmography
Abstract
1. Introduction
2. Methodology
2.1. Materials
2.2. Optical Fibre Sensor Design
2.3. Sleeve Design
2.4. Experimental Setup
2.5. Experimental Plan
2.5.1. Evaluation of Transmit/Receive Properties of Each Channel
2.5.2. In Vivo Healthy Volunteer Study
2.6. Signal Quality
3. Results
3.1. Evaluation of Transmit/Receive Properties of Each Channel
3.2. In Vivo Healthy Volunteer Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
P# | Sensor | Signal | DC Level (nW) | P-Pave (nW) | PI (%) | SNR | Average SpO2 (%) | |
---|---|---|---|---|---|---|---|---|
POF | Masimo | |||||||
1 | A | Red | 431.4 | – | – | – | – | 98 |
IR | 203.5 | – | – | – | ||||
B | Red | 517.7 | 0.4 | 0.08 | 7.99 | – | 99 | |
IR | 203.6 | – | – | – | ||||
C | Red | 486.4 | 0.33 | 0.07 | 12.79 | – | 99.1 | |
IR | 200.15 | – | – | – | ||||
D | Red | 405 | 0.97 | 0.24 | 11.59 | 98.1 | 98 | |
IR | 193.6 | 0.13 | 0.06 | 6.32 | ||||
2 | A | Red | 331.2 | 0.36 | 0.11 | 6.31 | – | 97.1 |
IR | 203.97 | – | – | – | ||||
B | Red | 393.5 | 1.1 | 0.28 | 3.87 | 96.9 | 96.6 | |
IR | 201.45 | 0.9 | 0.04 | 2.35 | ||||
C | Red | 499.15 | 0.22 | 0.045 | 4.99 | – | 97.3 | |
IR | 194.75 | – | – | – | ||||
D | Red | 244 | 0.475 | 0.19 | 3.94 | – | 97 | |
IR | 197.6 | – | – | – | ||||
3 | A | Red | 438.5 | – | – | – | – | 97.7 |
IR | 198.46 | – | – | – | ||||
B | Red | 512.1 | 0.21 | 0.04 | 3.95 | – | 98.3 | |
IR | 204.2 | – | – | – | ||||
C | Red | 515.3 | 0.32 | 0.06 | 9.54 | – | 98 | |
IR | 201.13 | – | – | – | ||||
D | Red | 311.1 | 0.53 | 0.17 | 5.89 | 97.6 | 97.4 | |
IR | 188.05 | 0.11 | 0.06 | 6.39 | ||||
4 | A | Red | 394.70 | 0.22 | 0.055 | 4.44 | – | 98 |
IR | 185.18 | – | – | – | ||||
B | Red | 455.6 | 0.28 | 0.06 | 5.28 | 99 | 99 | |
IR | 203.26 | 0.09 | 0.05 | 7.07 | ||||
C | Red | 485.90 | – | – | – | – | 98 | |
IR | 197.16 | – | – | – | ||||
D | Red | 385.10 | 0.26 | 0.07 | 6.75 | 99.1 | 99 | |
IR | 185.40 | 0.12 | 0.07 | 6.94 | ||||
5 | A | Red | 719 | – | – | – | – | 97.7 |
IR | 195.65 | – | – | – | ||||
B | Red | 477.65 | 0.43 | 0.09 | 10.96 | 97.8 | 98.1 | |
IR | 193.62 | 0.087 | 0.04 | 7.51 | ||||
C | Red | 333.10 | – | – | – | – | 98.2 | |
IR | 190.03 | – | – | – | ||||
D | Red | 199.30 | 0.34 | 0.17 | 2.41 | – | 99 | |
IR | 180.90 | – | – | – | ||||
6 | A | Red | 398.7 | 0.24 | 0.06 | 5.50 | – | 98.9 |
IR | 186.87 | – | – | – | ||||
B | Red | 405.2 | 0.66 | 0.16 | 5.36 | – | 99 | |
IR | 191.04 | – | – | – | ||||
C | Red | 305 | 0.52 | 0.17 | 5.15 | – | 100 | |
IR | 191.7 | – | – | – | ||||
D | Red | 428.50 | 2.73 | 0.64 | 4.1 | 99.3 | 99 | |
IR | 185.80 | 0.13 | 0.07 | 4.47 | ||||
7 | A | Red | 437 | 0.32 | 0.07 | 7.33 | 99.5 | 100 |
IR | 191.6 | 0.11 | 0.06 | 5.99 | ||||
B | Red | 438.48 | 0.28 | 0.06 | 3.95 | – | 99 | |
IR | 192.72 | – | – | – | ||||
C | Red | 419.9 | – | – | – | – | 100 | |
IR | 201.42 | – | – | – | ||||
D | Red | 474.60 | 0.29 | 0.06 | 3.20 | – | 100 | |
IR | 185.70 | – | – | – | ||||
8 | A | Red | 473.88 | 0.29 | 0.06 | 8.04 | – | 98 |
IR | 181.40 | – | – | – | ||||
B | Red | 356.90 | 0.44 | 0.12 | 5.49 | – | 98 | |
IR | 187.15 | – | – | – | ||||
C | Red | 385.40 | 0.52 | 0.13 | 5.80 | 98.9 | 98.7 | |
IR | 180.26 | 0.11 | 0.06 | 5.30 | ||||
D | Red | 325.40 | 0.37 | 0.11 | 4.29 | – | 97.4 | |
IR | 180.25 | – | – | – | ||||
9 | A | Red | 502.84 | 0.20 | 0.04 | 6.63 | – | 98.9 |
IR | 186 | – | – | – | ||||
B | Red | 420.7 | 0.84 | 0.19 | 7.19 | 98.1 | 98.3 | |
IR | 191.29 | 0.15 | 0.08 | 4.17 | ||||
C | Red | 475.80 | – | – | – | – | 99 | |
IR | 188.14 | – | – | – | ||||
D | Red | 408.78 | 0.52 | 0.13 | 5.98 | 99.5 | 99 | |
IR | 178.12 | 0.10 | 0.06 | 4.29 | ||||
10 | A | Red | 723.36 | 0.20 | 0.03 | 9.23 | – | 99 |
IR | 188.22 | – | – | – | ||||
B | Red | 389.73 | 0.26 | 0.07 | 8.84 | – | 97 | |
IR | 199.85 | – | – | – | ||||
C | Red | 401.31 | 0.51 | 0.13 | 8.30 | – | 98.1 | |
IR | 199.34 | – | – | – | ||||
D | Red | 385.26 | 0.24 | 0.06 | 6.86 | 97.3 | 97.5 | |
IR | 182.33 | 0.1 | 0.05 | 6.27 |
References
- Teichmann, D.; Kuhn, A.; Leonhardt, S.; Walter, M. The MAIN Shirt: A Textile-Integrated Magnetic Induction Sensor Array. Sensors 2014, 14, 1039–1056. [Google Scholar] [CrossRef] [PubMed]
- Koehler, K.; Drenowatz, C. Monitoring energy expenditure using a multi-sensor device-Applications and limitations of the sense wear armband in athletic populations. Front. Physiol. 2017, 8, 983. [Google Scholar] [CrossRef] [PubMed]
- Pandian, P.S.; Mohanavelu, K.; Safeer, K.P.; Kotresh, T.M.; Shakunthala, D.T.; Gopal, P. Smart Vest: Wearable multi-parameter remote physiological monitoring system. Med. Eng. Phys. 2008, 30, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Grossman, P. The LifeShirt: A multi-function ambulatory system monitoring health, disease, and medical intervention in the real world. Stud. Health Technol. Inform. 2004, 108, 133–141. [Google Scholar]
- Quandt, B.M.; Braun, F.; Ferrario, D.; Rossi, R.M.; Scheel-Sailer, A.; Wolf, M.; Boesel, L.F. Body-monitoring with photonic textiles: A reflective heartbeat sensor based on polymer optical fibres. J. R. Soc. Interface 2017, 14, 128. [Google Scholar]
- Selm, B.; Gürel, E.A.; Rothmaier, M.; Rossi, R.M.; Scherer, L.J. Polymeric Optical Fiber Fabrics for Illumination and Sensorial Applications in Textiles. J. Intell. Mater. Syst. Struct. 2010, 21, 1061–1071. [Google Scholar] [CrossRef]
- Quandt, B.M.; Boesel, L.F.; Rossi, R.M. Polymer optical fibres in healthcare: Solutions, applications and implications. A perspective. Polym. Int. 2018, 67, 1150–1154. [Google Scholar] [CrossRef]
- Scanaill, C.N.; Carew, S.; Barralon, P.; Noury, N.; Lyons, D.; Lyons, G.M. A review of approaches to mobility telemonitoring of the elderly in their living environment. Ann. Biomed. Eng. 2006, 34, 547–563. [Google Scholar] [CrossRef]
- Abouraddy, A.F.; Bayindir, M.; Benoit, G.; Hart, S.D.; Kuriki, K.; Orf, N.; Shapira, O.; Sorin, F.; Temelkuran, B.; Fink, Y. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 2007, 6, 336–347. [Google Scholar] [CrossRef]
- Yoshiya, I.; Shimada, Y.; Tanaka, K. Spectrophotometric monitoring of arterial oxygen saturation in the fingertip. Med. Biol. Eng. Comput. 1980, 18, 27–32. [Google Scholar] [CrossRef]
- Abay, T.Y.; Kyriacou, P.A. Reflectance Photoplethysmography as Noninvasive Monitoring of Tissue Blood Perfusion. IEEE Trans. Biomed. Eng. 2015, 62, 2187–2195. [Google Scholar] [CrossRef] [PubMed]
- Rusch, T.; Sankar, R.; Scharf, J. Signal processing methods for pulse oximetry. Comput. Biol. Med. 1996, 26, 143–159. [Google Scholar] [CrossRef]
- He, D.; Morgan, S.; Trachanis, D.; Hese, J.; Drogoudis, D.; Fummi, F.; Stefanni, F.; Guarnieri, V.; Hayes-Gill, B.R. A single-chip CMOS pulse oximeter with on-chip lock-in detection. Sensors (Switzerland) 2015, 15, 17076–17088. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization (ISO). Medical Electrical Equipment—Part 2-61: Particular Requirements for Basic Safety and Essential Performance of Pulse Oximeter Equipment; ISO 80601-2-61; ISO: Geneva, Switzerland, 2011. [Google Scholar]
- Kyriacou, P.A. Pulse oximetry in the oesophagus. Physiol. Meas. 2006, 27, R1–R35. [Google Scholar] [CrossRef] [PubMed]
- Grubb, M.R.; Carpenter, J.; A Crowe, J.; Teoh, J.; Marlow, N.; Ward, C.; Mann, C.; Sharkey, D.; Hayes-Gill, B.R. Forehead reflectance photoplethysmography to monitor heart rate: Preliminary results from neonatal patients. Physiol. Meas. 2014, 35, 881–893. [Google Scholar] [CrossRef]
- Singh, J.K.; Kamlin, C.O.F.; Morley, C.J.; O’Donnell, C.P.; Donath, S.; Davis, P.G. Accuracy of pulse oximetry in assessing heart rate of infants in the neonatal intensive care unit. J. Paediatr. Child Health 2008, 44, 273–275. [Google Scholar] [CrossRef]
- Wang, L.; Lo, B.P.; Yang, G.-Z. Multichannel Reflective PPG Earpiece Sensor With Passive Motion Cancellation. IEEE Trans. Biomed. Circuits Syst. 2007, 1, 235–241. [Google Scholar] [CrossRef]
- Lee, Y.K.; Jo, J.; Shin, H.S. Development and Evaluation of a Wristwatch-Type Photoplethysmography Array Sensor Module. IEEE Sens. J. 2012, 13, 1459–1463. [Google Scholar] [CrossRef]
- Mendelson, Y.; Dao, D.K.; Chon, K.H. Multi-channel pulse oximetry for wearable physiological monitoring. In Proceedings of the 2013 IEEE International Conference on Body Sensor Networks, Cambridge, MA, USA, 6–9 May 2013; pp. 1–6. [Google Scholar]
- Alzahrani, A.; Hu, S.; Azorin-Peris, V.; Barrett, L.; Esliger, D.; Hayes, M.; Akbare, S.; Achart, J.; Kuoch, S. A Multi-Channel Opto-Electronic Sensor to Accurately Monitor Heart Rate against Motion Artefact during Exercise. Sensors 2015, 15, 25681–25702. [Google Scholar] [CrossRef]
- Rothmaier, M.; Selm, B.; Spichtig, S.; Haensse, D.; Wolf, M. Photonic textiles for pulse oximetry. Opt. Express 2008, 16, 12973–12986. [Google Scholar] [CrossRef] [PubMed]
- Krehel, M.; Wolf, M.; Boesel, L.F.; Rossi, R.M.; Bona, G.-L.; Scherer, L.J. Development of a luminous textile for reflective pulse oximetry measurements. Biomed. Opt. Express 2014, 5, 2537–2547. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Correia, R.; Ballaji, H.; Korposh, S.; Hayes-Gill, B.; Morgan, S.P. Optical Fibre-Based Pulse Oximetry Sensor with Contact Force Detection. Sensors 2018, 18, 3632. [Google Scholar] [CrossRef] [PubMed]
- Kusznier, J.; Wojtkowski, W. Analysis of Possibilities of the Optical Fibers Usage in the Microprocessor Pulse—Oximeter. IFAC-PapersOnLine 2019, 52, 556–561. [Google Scholar] [CrossRef]
- Davenport, J.J.; Hickey, M.; Phillips, J.P.; Kyriacou, P.A. Method for producing angled optical fiber tips in the laboratory. Opt. Eng. 2016, 55, 026120. [Google Scholar] [CrossRef]
- Reips, U.-D.; Funke, F. Interval-level measurement with visual analogue scales in Internet-based research: VAS Generator. Behav. Res. Methods 2008, 40, 699–704. [Google Scholar] [CrossRef]
- De Felice, C.; Latini, G.; Vacca, P.; Kopotic, R.J. The pulse oximeter perfusion index as a predictor for high illness severity in neonates. Eur. J. Nucl. Med. Mol. Imaging 2002, 161, 561–562. [Google Scholar] [CrossRef]
- Yamazaki, H.; Nishiyama, J.; Suzuki, T. Use of perfusion index from pulse oximetry to determine efficacy of stellate ganglion block. Local Reg. Anesth. 2012, 5, 9–14. [Google Scholar] [CrossRef]
- National Instruments. Understanding Frequency Performance Specifications—National Instruments. 2019. Available online: http://www.ni.com/product-documentation/3359/en/ (accessed on 31 October 2020).
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Kaur, P.; Stoltzfus, J.C. Bland–Altman plot: A brief overview. Int. J. Acad. Med. 2017, 3, 110. [Google Scholar]
- Fronheiser, M.P.; Ermilov, S.A.; Brecht, H.-P.; Conjusteau, A.; Su, R.; Mehta, K.; Oraevsky, A.A. Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature. J. Biomed. Opt. 2010, 15, 021305. [Google Scholar] [PubMed]
- Ruggiero, E.; Castro, S.A.-D.; Habtemariam, A.; Salassa, L. Upconverting nanoparticles for the near infrared photoactivation of transition metal complexes: New opportunities and challenges in medicinal inorganic photochemistry. Dalton Trans. 2016, 45, 13012–13020. [Google Scholar] [PubMed]
- Liu, J.; Yan, B.P.-Y.; Dai, W.-X.; Ding, X.-R.; Zhang, Y.-T.; Zhao, N. Multi-wavelength photoplethysmography method for skin arterial pulse extraction. Biomed. Opt. Express 2016, 7, 4313–4326. [Google Scholar] [PubMed]
- Tadesse, M.G.; Harpa, R.; Chen, Y.; Wang, L.; Nierstrasz, V.; Loghin, C. Assessing the comfort of functional fabrics for smart clothing using subjective evaluation. J. Ind. Text. 2018, 48, 1310–1326. [Google Scholar]
- Henry, C.; Shipley, L.; Ward, C.; Mirahmadi, S.; Liu, C.; Morgan, S.; Crowe, J.A.; Carpenter, J.; Hayes-Gill, B.; Sharkey, D. Accurate neonatal heart rate monitoring using a new wireless, cap mounted device. Acta Paediatr. 2020. [Google Scholar] [CrossRef]
Sensor | p-Value | |
---|---|---|
Kolmogorov–Smirnov Test (>0.05–Normal Distribution) (≤0.05–Non-Normal Distribution) | Kruskal–Wallis Test (>0.05–No Significant Difference) (≤0.05–Significant Difference) | |
A | 0.01 | 0.223 |
B | <0.001 | |
C | 0.047 | |
D | 0.024 |
Sensor | Signal | P-Pave (nW) | PI (%) | SNR | SpO2 (%) |
---|---|---|---|---|---|
A | Red | 0.3 | 0.08 | 5.27 | 98.2 |
IR | 0.15 | 0.07 | 6.28 | ||
B | Red | 0.32 | 0.07 | 6.50 | 99 |
IR | 0.16 | 0.08 | 6.52 | ||
C | Red | 0.31 | 0.06 | 5.95 | 98.5 |
IR | 0.15 | 0.07 | 6.34 | ||
D | Red | 0.3 | 0.08 | 6.18 | 98.3 |
IR | 0.17 | 0.09 | 6.77 |
Sensor | Signal | DC Level (nW) | P-Pave (nW) | PI (%) | SNR | Average SpO2 (%) | |
---|---|---|---|---|---|---|---|
POF | Masimo | ||||||
A | Red | 502.8 | 0.20 | 0.04 | 6.63 | – | 98.9 |
IR | 186.0 | – | – | – | |||
B | Red | 420.7 | 0.84 | 0.19 | 7.19 | 98.1 | 98.3 |
IR | 191.3 | 0.15 | 0.08 | 4.17 | |||
C | Red | 475.8 | – | – | – | – | 99 |
IR | 188.1 | – | – | – | |||
D | Red | 408.9 | 0.52 | 0.13 | 5.98 | 99.5 | 99 |
IR | 178.1 | 0.10 | 0.06 | 4.29 |
P# | Sensor | Signal | DC Level (nW) | P-Pave (nW) | PI (%) | SNR | Average SpO2 (%) | |
---|---|---|---|---|---|---|---|---|
POF | Masimo | |||||||
1 | D | Red | 405.0 | 0.97 | 0.24 | 11.59 | 98.1 | 98 |
IR | 193.6 | 0.13 | 0.06 | 6.32 | ||||
2 | B | Red | 393.5 | 1.1 | 0.28 | 3.87 | 96.9 | 96.6 |
IR | 201.5 | 0.9 | 0.04 | 2.35 | ||||
3 | D | Red | 311.1 | 0.53 | 0.17 | 5.89 | 97.6 | 97.4 |
IR | 188.1 | 0.11 | 0.06 | 6.39 | ||||
4 | D | Red | 385.1 | 0.26 | 0.07 | 6.75 | 99.1 | 99 |
IR | 185.4 | 0.12 | 0.07 | 6.94 | ||||
B | Red | 455.6 | 0.28 | 0.06 | 5.28 | 99 | 99 | |
IR | 203.3 | 0.09 | 0.05 | 7.07 | ||||
5 | B | Red | 477.7 | 0.43 | 0.09 | 10.96 | 97.8 | 98.1 |
IR | 193.6 | 0.087 | 0.04 | 7.51 | ||||
6 | D | Red | 428.5 | 2.73 | 0.64 | 4.1 | 99.3 | 99 |
IR | 185.8 | 0.13 | 0.07 | 4.47 | ||||
7 | A | Red | 437.0 | 0.32 | 0.07 | 7.33 | 99.5 | 100 |
IR | 191.6 | 0.11 | 0.06 | 5.99 | ||||
8 | C | Red | 385.4 | 0.52 | 0.13 | 5.80 | 98.9 | 98.7 |
IR | 180.3 | 0.11 | 0.06 | 5.30 | ||||
9 | D | Red | 408.8 | 0.52 | 0.13 | 5.98 | 99.5 | 99 |
IR | 178.1 | 0.10 | 0.06 | 4.29 | ||||
B | Red | 420.7 | 0.84 | 0.19 | 7.19 | 98.1 | 98.3 | |
IR | 191.3 | 0.15 | 0.08 | 4.17 | ||||
10 | D | Red | 385.3 | 0.24 | 0.06 | 6.86 | 97.3 | 97.5 |
IR | 182.3 | 0.1 | 0.05 | 6.27 |
Configuration | Sensing Point | PD/LED | LED Power (mW) | References |
---|---|---|---|---|
Textile sleeve | Wrist | 2/2 (1 red and 1 IR) | 14.5 red, 6.8 IR | This study |
Ear-worn platform | Ear | 3/2 IR | 2 | Wang et al. [18] |
Wrist watch | Wrist | 4/4 IR | 2 | Lee et al. [19] |
Elastic headband | Forehead | 1/6 (3 red and 3 IR) | – | Mendelson et al. [20] |
Electronic patch sensor | Forehead, wrist, head | 1/16 (4 red, 4 IR, 4 green, 4 yellow) | – | Alzahrani et al. [21] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballaji, H.K.; Correia, R.; Korposh, S.; Hayes-Gill, B.R.; Hernandez, F.U.; Salisbury, B.; Morgan, S.P. A Textile Sleeve for Monitoring Oxygen Saturation Using Multichannel Optical Fibre Photoplethysmography. Sensors 2020, 20, 6568. https://doi.org/10.3390/s20226568
Ballaji HK, Correia R, Korposh S, Hayes-Gill BR, Hernandez FU, Salisbury B, Morgan SP. A Textile Sleeve for Monitoring Oxygen Saturation Using Multichannel Optical Fibre Photoplethysmography. Sensors. 2020; 20(22):6568. https://doi.org/10.3390/s20226568
Chicago/Turabian StyleBallaji, Hattan K., Ricardo Correia, Serhiy Korposh, Barrie R. Hayes-Gill, Francisco U. Hernandez, Byron Salisbury, and Stephen P. Morgan. 2020. "A Textile Sleeve for Monitoring Oxygen Saturation Using Multichannel Optical Fibre Photoplethysmography" Sensors 20, no. 22: 6568. https://doi.org/10.3390/s20226568
APA StyleBallaji, H. K., Correia, R., Korposh, S., Hayes-Gill, B. R., Hernandez, F. U., Salisbury, B., & Morgan, S. P. (2020). A Textile Sleeve for Monitoring Oxygen Saturation Using Multichannel Optical Fibre Photoplethysmography. Sensors, 20(22), 6568. https://doi.org/10.3390/s20226568