In Situ Shear Test for Revealing the Mechanical Properties of the Gravelly Slip Zone Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Principle of In Situ Shear Test
2.3. In Situ Shear Test Apparatus
2.4. In Situ Shear Test Process
2.4.1. Sample Preparation
2.4.2. Apparatus Installation
2.4.3. Stress Loading
2.4.4. Post-Processing
2.5. Indoor Direct Shear Test
3. Results
3.1. Deformation of the Sample during Shear Test
3.2. Shear Strength of the Slip Zone Soil by In Situ Shear Test
3.3. Shear Constitutive Model of Slip Zone Soil with Gravels
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, C.; Wu, J.; Tang, H.; Hu, X.; Liu, X.; Wang, C.; Liu, T.; Zhang, Y. Model testing of the response of stabilizing piles in landslides with upper hard and lower weak bedrock. Eng. Geol. 2016, 204, 65–76. [Google Scholar] [CrossRef]
- Zou, Z.; Yan, J.; Tang, H.; Wang, S.; Xiong, C.; Hu, X. A shear constitutive model for describing the full process of the deformation and failure of slip zone soil. Eng. Geol. 2020, 276, 105766. [Google Scholar] [CrossRef]
- Ma, J.; Niu, X.; Xiong, C.; Lu, S.; Xia, D.; Zhang, B.; Tang, H. Experimental investigation of the physical properties and microstructure of slate under wetting and drying cycles using micro-CT and ultrasonicwave velocity tests. Sensors 2020, 20, 4853. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.P.; Liu, D. Residual strength of slip zone soils. Landslides 2014, 11, 305–314. [Google Scholar] [CrossRef]
- Tan, Q.; Tang, H.; Fan, L.; Xiong, C.; Fan, Z.; Zhao, M.; Li, C.; Wang, D.; Zou, Z. In situ triaxial creep test for investigating deformational properties of gravelly sliding zone soil: Example of the Huangtupo 1# landslide, China. Landslides 2018, 15, 2499–2508. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Wu, W.; Cui, D.; Su, A.; Xiang, W. Creep properties of clastic soil in a reactivated slow-moving landslide in the Three Gorges Reservoir Region, China. Eng. Geol. 2020, 267, 105493. [Google Scholar] [CrossRef]
- Wen, B.-P.; Jiang, X.-Z. Effect of gravel content on creep behavior of clayey soil at residual state: Implication for its role in slow-moving landslides. Landslides 2016, 14, 559–576. [Google Scholar] [CrossRef]
- Vithana, S.B.; Nakamura, S.; Gibo, S.; Yoshinaga, A.; Kimura, S. Correlation of large displacement drained shear strength of landslide soils measured by direct shear and ring shear devices. Landslides 2011, 9, 305–314. [Google Scholar] [CrossRef]
- Nian, T.; Feng, Z.-K.; Yu, P.-C.; Wu, H.-J. Strength behavior of slip-zone soils of landslide subject to the change of water content. Nat. Hazards 2013, 68, 711–721. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, J.; Xu, W.Y.; Sun, H.K. Stability analysis of a large landslide in hydropower engineering. Nat. Hazards 2013, 70, 527–548. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Xue, S.; Wang, R.; Xiao, M. Stability analysis of a typical landslide mass in the Three Gorges Reservoir under varying reservoir water levels. Environ. Earth Sci. 2020, 79, 42. [Google Scholar] [CrossRef]
- Boldini, D.; Wang, F.; Sassa, K.; Tommasi, P. Application of large-scale ring shear tests to the analysis of tsunamigenic landslides at the Stromboli volcano, Italy. Landslides 2009, 6, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Kimura, S.; Nakamura, S.; Vithana, S.B.; Sakai, K. Shearing rate effect on residual strength of landslide soils in the slow rate range. Landslides 2014, 11, 969–979. [Google Scholar] [CrossRef]
- Li, Y.; Aydin, A. Shear zone structures and stress fluctuations in large ring shear tests. Eng. Geol. 2013, 167, 6–13. [Google Scholar] [CrossRef]
- Li, Y.; Wen, B.; Aydin, A.; Ju, N. Ring shear tests on slip zone soils of three giant landslides in the Three Gorges Project area. Eng. Geol. 2013, 154, 106–115. [Google Scholar] [CrossRef]
- Sassa, K.; Khang, D.Q.; He, B.; Takara, K.; Inoue, K.; Nagai, O. A new high-stress undrained ring-shear apparatus and its application to the 1792 Unzen–Mayuyama megaslide in Japan. Landslides 2014, 11, 827–842. [Google Scholar] [CrossRef]
- Miao, H.; Wang, G.; Yin, K.; Kamai, T.; Li, Y. Mechanism of the slow-moving landslides in Jurassic red-strata in the Three Gorges Reservoir, China. Eng. Geol. 2014, 171, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Scaringi, G.; Hu, W.; Xu, Q.; Huang, R. Shear-Rate-Dependent Behavior of Clayey Bimaterial Interfaces at Landslide Stress Levels. Geophys. Res. Lett. 2018, 45, 766–777. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Tang, H.; Wang, M.; Shan, Z.; Hu, X. Creep behavior of slip zone soil of the Majiagou landslide in the Three Gorges area. Environ. Earth Sci. 2016, 75, 1199. [Google Scholar] [CrossRef]
- Wu, Y.; Miao, F.; Li, L.; Xie, Y.; Chang, B. Time-varying reliability analysis of Huangtupo Riverside No.2 Landslide in the Three Gorges Reservoir based on water-soil coupling. Eng. Geol. 2017, 226, 267–276. [Google Scholar] [CrossRef]
- Tang, H.; Wasowski, J.; Juang, C.H. Geohazards in the three Gorges Reservoir Area, China—Lessons learned from decades of research. Eng. Geol. 2019, 261, 105267. [Google Scholar] [CrossRef]
- Tang, H.; Li, C.; Hu, X.; Wang, L.; Criss, R.; Su, A.; Wu, Y.; Xiong, C. Deformation response of the Huangtupo landslide to rainfall and the changing levels of the Three Gorges Reservoir. Bull. Int. Assoc. Eng. Geol. 2014, 74, 933–942. [Google Scholar] [CrossRef]
- Deng, Q.; Zhu, Z.; Cui, Z.; Wang, X. Mass rock creep and landsliding on the Huangtupo slope in the reservoir area of the Three Gorges Project, Yangtze River, China. Eng. Geol. 2000, 58, 67–83. [Google Scholar] [CrossRef]
- Zou, Z.; Xiong, C.; Wang, Y.; Tang, H.; Wang, J. An Approach to Obtain Saturated Hydraulic Conductivity of Reservoir Landslide. Geotech. Geol. Eng. 2017, 36, 1–12. [Google Scholar] [CrossRef]
- Tang, H.; Li, C.; Hu, X.; Su, A.; Wang, L.; Wu, Y.; Criss, R.; Xiong, C.; Li, Y. Evolution characteristics of the Huangtupo landslide based on in situ tunneling and monitoring. Landslides 2014, 12, 511–521. [Google Scholar] [CrossRef]
- Wang, J.; Xiang, W.; Lu, N. Landsliding triggered by reservoir operation: A general conceptual model with a case study at Three Gorges Reservoir. Acta Geotech. 2014, 9, 771–788. [Google Scholar] [CrossRef]
- Hu, X.; Tang, H.; Li, C.; Sun, R. Stability of Huangtupo riverside slumping mass II# under water level fluctuation of Three Gorges Reservoir. J. Earth Sci. 2012, 23, 326–334. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Z.; Zhang, Q.; Xiong, C.; Tang, H.; Fan, L.; Xie, F.; Yan, J.; Luo, Y. In Situ Shear Test for Revealing the Mechanical Properties of the Gravelly Slip Zone Soil. Sensors 2020, 20, 6531. https://doi.org/10.3390/s20226531
Zou Z, Zhang Q, Xiong C, Tang H, Fan L, Xie F, Yan J, Luo Y. In Situ Shear Test for Revealing the Mechanical Properties of the Gravelly Slip Zone Soil. Sensors. 2020; 20(22):6531. https://doi.org/10.3390/s20226531
Chicago/Turabian StyleZou, Zongxing, Qi Zhang, Chengren Xiong, Huiming Tang, Lei Fan, Fang Xie, Junbiao Yan, and Yinfeng Luo. 2020. "In Situ Shear Test for Revealing the Mechanical Properties of the Gravelly Slip Zone Soil" Sensors 20, no. 22: 6531. https://doi.org/10.3390/s20226531
APA StyleZou, Z., Zhang, Q., Xiong, C., Tang, H., Fan, L., Xie, F., Yan, J., & Luo, Y. (2020). In Situ Shear Test for Revealing the Mechanical Properties of the Gravelly Slip Zone Soil. Sensors, 20(22), 6531. https://doi.org/10.3390/s20226531