Challenges in Resource-Constrained IoT Devices: Energy and Communication as Critical Success Factors for Future IoT Deployment
Abstract
:1. Introduction
2. Passive Systems
2.1. Backscatter Communication
2.2. Wireless Power Transfer
2.3. Energy Harvesting
2.4. Chipless Techniques
3. Semi-Passive Systems
3.1. Simultaneous Wireless Information and Power Transfer
3.2. Wake-Up Radio
4. Active Systems
4.1. From Short- to Long-Range Communications
4.2. Active Radios Powered by Coin Cell Batteries
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The “Only” Coke Machine on the Internet; Carnegie Mellon University, School of Computer Science: Pittsburgh, PA, USA, 1982.
- Shahid, N.; Aneja, S. Internet of Things: Vision, application areas and research challenges. In Proceedings of the 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), Palladam, India, 10–11 February 2017; pp. 583–587. [Google Scholar]
- Yannuzzi, M.; Milito, R.; Serral-Gracià, R.; Montero, D.; Nemirovsky, M. Key ingredients in an IoT recipe: Fog Computing, Cloud computing, and more Fog Computing. In Proceedings of the 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Athens, Greece, 1–3 December 2014; pp. 325–329. [Google Scholar]
- Satyanarayanan, M. The emergence of edge computing. Computer 2017, 50, 30–39. [Google Scholar] [CrossRef]
- Hassan, Q.F.; Madani, S.A.; Khan, R.A. Internet of Things: Challenges, Advances, and Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Van Kranenburg, R.; Bassi, A. IoT challenges. Commun. Mob. Comput. 2012, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Xu, H.; Liu, D.; Hu, B.; Wang, H. A vision of IoT: Applications, challenges, and opportunities with china perspective. IEEE Internet Things J. 2014, 1, 349–359. [Google Scholar] [CrossRef]
- Kamalinejad, P.; Mahapatra, C.; Sheng, Z.; Mirabbasi, S.M.; Leung, V.C.; Guan, Y.L. Wireless energy harvesting for the Internet of Things. IEEE Commun. Mag. 2015, 53, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Roselli, L.; Mariotti, C.; Virili, M.; Alimenti, F.; Orecchini, G.; Palazzi, V.; Mezzanotte, P.; Carvalho, N. WPT related applications enabling Internet of things evolution. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016; pp. 1–2. [Google Scholar]
- Raposo, D.; Rodrigues, A.; Sinche, S.; Sá Silva, J.; Boavida, F. Industrial IoT monitoring: Technologies and architecture proposal. Sensors 2018, 18, 3568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porkodi, R.; Bhuvaneswari, V. The internet of things (IOT) applications and communication enabling technology standards: An overview. In Proceedings of the 2014 International Conference on Intelligent Computing Applications, Coimbatore, India, 6–7 March 2014; pp. 324–329. [Google Scholar]
- Correia, R.; Carvalho, N.B. Ultrafast backscatter modulator with low-power consumption and wireless power transmission capabilities. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 1152–1154. [Google Scholar] [CrossRef]
- Talla, V.; Hessar, M.; Kellogg, B.; Najafi, A.; Smith, J.R.; Gollakota, S. Lora backscatter: Enabling the vision of ubiquitous connectivity. Proc. ACM Interact. Mobile Wearable Ubiquitous Technol. 2017, 1, 1–24. [Google Scholar] [CrossRef]
- Gonçalves, R.; Pinho, P.; Carvalho, N.B.; Tentzeris, M.M. Humidity passive sensors based on UHF RFID using cork dielectric slabs. In Proceedings of the 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 13–17 April 2015; pp. 1–4. [Google Scholar]
- Sample, A.P.; Yeager, D.J.; Powledge, P.S.; Mamishev, A.V.; Smith, J.R. Design of an RFID-based battery-free programmable sensing platform. IEEE Trans. Instrum. Meas. 2008, 57, 2608–2615. [Google Scholar] [CrossRef]
- Kolarovszki, P.; Kolarovszká, Z.; Perakovic, D.; Periša, M. Laboratory testing of active and passive UHF RFID tags. Transp. Telecommun. J. 2016, 17, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Bolomey, J.C.; Gardiol, F.E. Engineering Applications of the Modulated Scatterer Technique; Artech House: Norwood, MA, USA, 2001. [Google Scholar]
- Ahson, S.A.; Ilyas, M. RFID Handbook: Applications, Technology, Security, AND Privacy; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Stockman, H. Communication by Means of Reflected Power. Proc. IRE 1948, 36, 1196–1204. [Google Scholar] [CrossRef]
- Capdevila, S.; Jofre, L.; Romeu, J.; Bolomey, J.C. Passive RFID based sensing. In Proceedings of the 2011 IEEE International Conference on RFID-Technologies and Applications, Sitges, Spain, 15–16 September 2011; pp. 507–512. [Google Scholar]
- Kimionis, J.; Bletsas, A.; Sahalos, J.N. Bistatic backscatter radio for power-limited sensor networks. In Proceedings of the 2013 IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, USA, 9–13 December 2013; pp. 353–358. [Google Scholar]
- Ciftler, B.S.; Kadri, A.; Güvenç, I. IoT localization for bistatic passive UHF RFID systems with 3-D radiation pattern. IEEE Internet Things J. 2017, 4, 905–916. [Google Scholar] [CrossRef]
- Daskalakis, S.N.; Georgiadis, A.; Goussetis, G.; Tentzeris, M.M. Low Cost Ambient Backscatter for Agricultural Applications. In Proceedings of the 2019 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Granada, Spain, 9–13 September 2019; p. 201. [Google Scholar]
- Zhang, W.; Qin, Y.; Zhao, W.; Jia, M.; Liu, Q.; He, R.; Ai, B. A green paradigm for Internet of Things: Ambient backscatter communications. China Commun. 2019, 16, 109–119. [Google Scholar] [CrossRef]
- ElMossallamy, M.A.; Han, Z.; Pan, M.; Jäntti, R.; Seddik, K.G.; Li, G.Y. Backscatter communications over ambient OFDM signals using null subcarriers. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, UAE, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Liu, V.; Parks, A.; Talla, V.; Gollakota, S.; Wetherall, D.; Smith, J.R. Ambient backscatter: Wireless communication out of thin air. ACM SIGCOMM Comput. Commun. Rev. 2013, 43, 39–50. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yoon, C.; Ahn, H.S.; Lim, S.O. Implementation of Multi-level Modulated-Backscatter Communication System Using Ambient Wi-Fi Signal. In Proceedings of the 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA), Pisa, Italy, 25–27 September 2019; pp. 476–479. [Google Scholar]
- Ensworth, J.F.; Reynolds, M.S. BLE-backscatter: Ultralow-power IoT nodes compatible with Bluetooth 4.0 low energy (BLE) smartphones and tablets. IEEE Trans. Microw. Theory Tech. 2017, 65, 3360–3368. [Google Scholar] [CrossRef]
- Rosenthal, J.; Reynolds, M.S. A 158 pJ/bit 1.0 Mbps Bluetooth Low Energy (BLE) compatible backscatter communication system for wireless sensing. In Proceedings of the 2019 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), Orlando, FL, USA, 20–23 January 2019; pp. 1–3. [Google Scholar]
- Correia, R.; Ding, Y.; Daskalakis, S.N.; Petridis, P.; Goussetis, G.; Georgiadis, A.; Carvalho, N.B. Chirp based backscatter modulation. In Proceedings of the IEEE MTT-S International Microwave Symposium 2019, Boston, MA, USA, 2–7 June 2019; pp. 279–282. [Google Scholar]
- Occhiuzzi, C.; Caizzone, S.; Marrocco, G. Passive UHF RFID antennas for sensing applications: Principles, methods, and classifcations. IEEE Antennas Propag. Mag. 2013, 55, 14–34. [Google Scholar] [CrossRef] [Green Version]
- Rose, D.P.; Ratterman, M.E.; Griffin, D.K.; Hou, L.; Kelley-Loughnane, N.; Naik, R.R.; Hagen, J.A.; Papautsky, I.; Heikenfeld, J.C. Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Trans. Biomed. Eng. 2014, 62, 1457–1465. [Google Scholar] [CrossRef]
- Philipose, M.; Smith, J.R.; Jiang, B.; Mamishev, A.; Roy, S.; Sundara-Rajan, K. Battery-free wireless identification and sensing. IEEE Pervasive Comput. 2005, 4, 37–45. [Google Scholar] [CrossRef]
- Mayordomo, I.; Dräger, T.; Spies, P.; Bernhard, J.; Pflaum, A. An overview of technical challenges and advances of inductive wireless power transmission. Proc. IEEE 2013, 101, 1302–1311. [Google Scholar] [CrossRef]
- Kim, H.J.; Hirayama, H.; Kim, S.; Han, K.J.; Zhang, R.; Choi, J.W. Review of near-field wireless power and communication for biomedical applications. IEEE Access 2017, 5, 21264–21285. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, H.; Zhang, D.; Chen, S.; Xu, M. WPT Charging System Based on Variety Excitation Source. In Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 20–22 October 2018; pp. 1–5. [Google Scholar]
- Belo, D.; Carvalho, N.B. Far field WPT—Main challenges. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 331–335. [Google Scholar]
- OSSIA. Proven Wireless Power Technology You Can Use Today. Available online: https://www.ossia.com (accessed on 23 March 2020).
- Wi-Charge. The Future of Power. Available online: https://wi-charge.com (accessed on 23 March 2020).
- Kim, D.I.; Moon, J.H.; Park, J.J. New SWIPT using PAPR: How it works. IEEE Wirel. Commun. Lett. 2016, 5, 672–675. [Google Scholar] [CrossRef]
- Boaventura, A.S.; Carvalho, N.B. Maximizing DC power in energy harvesting circuits using multisine excitation. In Proceedings of the 2011 IEEE MTT-S International Microwave Symposium, Baltimore, MD, USA, 5–10 June 2011; pp. 1–4. [Google Scholar]
- Hamzi, I.; El Bakkali, M.; Aghoutane, M.; Touhami, N.A. Analysis of series and shunt rectifier circuits topologies. In Proceedings of the 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), Fez, Morocco, 3–4 April 2019; pp. 1–4. [Google Scholar]
- Correia, R.; Carvalho, N.B.; Kawasaki, S. Continuously Power Delivering for Passive Backscatter Wireless Sensor Networks. IEEE Trans. Microw. Theory Tech. 2016, 64, 3723–3731. [Google Scholar] [CrossRef]
- Valenta, C.R.; Durgin, G.D. Harvesting Wireless Power: Survey of Energy-Harvester Conversion Efficiency in Far-Field, Wireless Power Transfer Systems. IEEE Microw. Mag. 2014, 15, 108–120. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Vaddi, R.; Ma, K.; Datta, S.; Narayanan, V. Tunnel FET RF Rectifier Design for Energy Harvesting Applications. IEEE J. Emerg. Sel. Top. Circuits Syst. 2014, 4, 400–411. [Google Scholar] [CrossRef]
- Falkenstein, E.; Roberg, M.; Popovic, Z. Low-Power Wireless Power Delivery. IEEE Trans. Microw. Theory Tech. 2012, 60, 2277–2286. [Google Scholar] [CrossRef]
- Belo, D.; Correia, R.; Pereira, F.; De Carvalho, N.B. Dual band wireless power and data transfer for space-based sensors. In Proceedings of the 2017 Topical Workshop on Internet of Space (TWIOS), Phoenix, AZ, USA, 15–18 January 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Suh, Y.; Chang, K. A High-Efficiency Dual-Frequency Rectenna for 2.45- and 5.8-GHz Wireless Power Transmission. IEEE Trans. Microw. Theory Tech. 2002, 50, 1784–1789. [Google Scholar] [CrossRef] [Green Version]
- Correia, R.; Carvalho, N.B. HEMT based RF to DC converter efficiency enhancement using special designed waveforms. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 609–612. [Google Scholar] [CrossRef]
- Scheeler, R.; Korhummel, S.; Popovic, Z. A Dual-Frequency Ultralow-Power Efficient 0.5-g Rectenna. IEEE Microw. Mag. 2014, 15, 109–114. [Google Scholar] [CrossRef]
- Pham, B.L.; Pham, A.V. Triple bands antenna and high efficiency rectifier design for RF energy harvesting at 900, 1900 and 2400 MHz. In Proceedings of the 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013; pp. 1–3. [Google Scholar] [CrossRef]
- Georgiadis, A.; Collado, A.; Via, S.; Meneses, C. Flexible hybrid solar/EM energy harvester for autonomous sensors. In Proceedings of the 2011 IEEE MTT-S International Microwave Symposium, Baltimore, MD, USA, 5–10 June 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Niotaki, K.; Collado, A.; Georgiadis, A.; Kim, S.; Tentzeris, M.M. Solar/Electromagnetic Energy Harvesting and Wireless Power Transmission. Proc. IEEE 2014, 102, 1712–1722. [Google Scholar] [CrossRef] [Green Version]
- Borges Carvalho, N.; Georgiadis, A.; Costanzo, A.; Rogier, H.; Collado, A.; Garcia, J.A.; Lucyszyn, S.; Mezzanotte, P.; Kracek, J.; Masotti, D.; et al. Wireless Power Transmission: R&D Activities Within Europe. IEEE Trans. Microw. Theory Tech. 2014, 62, 1031–1045. [Google Scholar] [CrossRef]
- Zhong, Z.; Sun, H.; Guo, Y. Design of rectifier with extended operating input power range. Electron. Lett. 2013, 49, 1175–1176. [Google Scholar] [CrossRef]
- Correia, R.; Carvalho, N.B. Single transistor passive backscatter sensor. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 820–823. [Google Scholar] [CrossRef]
- Ruiz, M.N.; Marante, R.; Garcia, J.A. A class E synchronous rectifier based on an E-pHEMT device for wireless powering applications. In Proceedings of the 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 17–22 June 2012; pp. 1–3. [Google Scholar] [CrossRef]
- Mansour, M.M.; Kanaya, H. High-efficient broadband CPW RF rectifier for wireless energy harvesting. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 288–290. [Google Scholar] [CrossRef]
- Noghabaei, S.M.; Radin, R.L.; Savaria, Y.; Sawan, M. A high-efficiency ultra-low-power CMOS rectifier for RF energy harvesting applications. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–4. [Google Scholar]
- Gui, L.; Yang, M.; Fang, P.; Yang, S. RSS-based indoor localisation using MDCF. IET Wirel. Sens. Syst. 2017, 7, 98–104. [Google Scholar] [CrossRef]
- Xu, E.; Ding, Z.; Dasgupta, S. Source localization in wireless sensor networks from signal time-of-arrival measurements. IEEE Trans. Signal Process. 2011, 59, 2887–2897. [Google Scholar] [CrossRef]
- Tomic, S.; Beko, M.; Dinis, R. 3-D target localization in wireless sensor networks using RSS and AoA measurements. IEEE Trans. Veh. Technol. 2016, 66, 3197–3210. [Google Scholar] [CrossRef]
- Belo, D.; Ribeiro, D.C.; Pinho, P.; Carvalho, N.B. A selective, tracking, and power adaptive far-field wireless power transfer system. IEEE Trans. Microw. Theory Tech. 2019, 67, 3856–3866. [Google Scholar] [CrossRef]
- El-Sayed, A.R.; Tai, K.; Biglarbegian, M.; Mahmud, S. A survey on recent energy harvesting mechanisms. In Proceedings of the 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Vancouver, BC, Canada, 15–18 May 2016; pp. 1–5. [Google Scholar]
- Donovan, C.; Dewan, A.; Heo, D.; Beyenal, H. Batteryless, wireless sensor powered by a sediment microbial fuel cell. Environ. Sci. Technol. 2008, 42, 8591–8596. [Google Scholar] [CrossRef] [PubMed]
- Tuna, G.; Gungor, V. Energy harvesting and battery technologies for powering wireless sensor networks. In Industrial Wireless Sensor Networks; Elsevier: Amsterdam, The Netherlands, 2016; pp. 25–38. [Google Scholar]
- Dewan, A.; Ay, S.U.; Karim, M.N.; Beyenal, H. Alternative power sources for remote sensors: A review. J. Power Sources 2014, 245, 129–143. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, S.; Zu, J.; Inman, D. High-performance piezoelectric energy harvesters and their applications. Joule 2018, 2, 642–697. [Google Scholar] [CrossRef] [Green Version]
- Minazara, E.; Vasic, D.; Costa, F. Piezoelectric generator harvesting bike vibrations energy to supply portable devices. In Proceedings of the International Conference on Renewable Energies And Power Quality (ICREPQ’08), Santander, Spain, 12–14 March 2008. [Google Scholar]
- Lallart, M. Small-Scale Energy Harvesting; InTechOpen: London, UK, 2012. [Google Scholar]
- Pereira, F.; Sampaio, H.; Chaves, R.; Correia, R.; Luís, M.; Sargento, S.; Jordão, M.; Almeida, L.; Senna, C.; Oliveira, A.S.; et al. When Backscatter Communication Meets Vehicular Networks: Boosting Crosswalk Awareness. IEEE Access 2020, 8, 34507–34521. [Google Scholar] [CrossRef]
- Cernaianu, M.O.; Cirstea, C.; Gontean, A. Thermoelectrical energy harvesting system: Modelling, simulation and implementation. In Proceedings of the 2012 10th International Symposium on Electronics and Telecommunications, Timisoara, Romania, 15–16 November 2012; pp. 67–70. [Google Scholar]
- Vlach, R. Novel approach to thermoelectric generator modeling as energy harvesting system. In Proceedings of the 16th International Conference on Mechatronics-Mechatronika 2014, Brno, Czech Republic, 3–5 December 2014; pp. 725–728. [Google Scholar]
- Bahk, J.H.; Fang, H.; Yazawa, K.; Shakouri, A. Flexible thermoelectric materials and device optimization for wearable energy harvesting. J. Mater. Chem. C 2015, 3, 10362–10374. [Google Scholar] [CrossRef]
- Ramadass, Y.K.; Chandrakasan, A.P. A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage. IEEE J. Solid-State Circuits 2010, 46, 333–341. [Google Scholar] [CrossRef]
- Leonov, V.; Vullers, R. Wearable thermoelectric generators for body-powered devices. J. Electron. Mater. 2009, 38, 1491–1498. [Google Scholar] [CrossRef]
- Sharma, H.; Haque, A.; Jaffery, Z.A. An Efficient Solar Energy Harvesting System for Wireless Sensor Nodes. In Proceedings of the 2018 2nd IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 22–24 October 2018; pp. 461–464. [Google Scholar]
- Hassan, M.; Bermak, A. Solar harvested energy prediction algorithm for wireless sensors. In Proceedings of the 2012 4th Asia Symposium on Quality Electronic Design (ASQED), Penang, Malaysia, 10–11 July 2012; pp. 178–181. [Google Scholar]
- Meng, X.; Li, X.; Tsui, C.Y.; Ki, W.H. An indoor solar energy harvesting system using dual mode SIDO converter with fully digital time-based MPPT. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; pp. 2354–2357. [Google Scholar]
- Meng, X.; Li, X.; Yao, Y.; Tsui, C.Y.; Ki, W.H. An indoor solar energy harvester with ultra-low-power reconfigurable power-on-reset-styled voltage detector. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar]
- Nabavi, S.; Zhang, L. Portable wind energy harvesters for low-power applications: A survey. Sensors 2016, 16, 1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Liu, W.; Zhu, Y. Design of a wind energy harvesting wireless sensor node. In Proceedings of the 2013 IEEE Third International Conference on Information Science and Technology (ICIST), Yangzhou, China, 23–25 March 2013; pp. 1494–1497. [Google Scholar]
- Flammini, A.; Marioli, D.; Sardini, E.; Serpelloni, M. An autonomous sensor with energy harvesting capability for airflow speed measurements. In Proceedings of the 2010 IEEE Instrumentation & Measurement Technology Conference Proceedings, Austin, TX, USA, 3–6 May 2010; pp. 892–897. [Google Scholar]
- Taylor, G.W.; Burns, J.R.; Kammann, S.; Powers, W.B.; Welsh, T.R. The energy harvesting eel: A small subsurface ocean/river power generator. IEEE J. Ocean. Eng. 2001, 26, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Morais, R.; Fernandes, M.A.; Matos, S.G.; Serôdio, C.; Ferreira, P.; Reis, M. A ZigBee multi-powered wireless acquisition device for remote sensing applications in precision viticulture. Comput. Electron. Agric. 2008, 62, 94–106. [Google Scholar] [CrossRef]
- Jun, J.; Chou, B.; Lin, J.; Phipps, A.; Shengwen, X.; Ngo, K.; Johnson, D.; Kasyap, A.; Nishida, T.; Wang, H.; et al. A hydrogen leakage detection system using self-powered wireless hydrogen sensor nodes. Solid-State Electron. 2007, 51, 1018–1022. [Google Scholar] [CrossRef]
- Park, C.; Chou, P.H. Ambimax: Autonomous energy harvesting platform for multi-supply wireless sensor nodes. In Proceedings of the 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, Reston, VA, USA, 28 September 2006; Volume 1, pp. 168–177. [Google Scholar]
- Forouzandeh, M.; Karmakar, N.C. Chipless RFID tags and sensors: A review on time-domain techniques. Wirel. Power Transf. 2015, 2, 62–77. [Google Scholar] [CrossRef]
- Amin, E.M.; Saha, J.K.; Karmakar, N.C. Smart sensing materials for low-cost chipless RFID sensor. IEEE Sens. J. 2014, 14, 2198–2207. [Google Scholar] [CrossRef]
- Su, H.H.; Zhang, J.; Tong, M.S. Design of chipless RFID tag based on surface acoustic wave. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL), Singapore, 19–22 November 2017; pp. 2136–2139. [Google Scholar]
- Kang, A.; Zhang, C.; Ji, X.; Han, T.; Li, R.; Li, X. SAW-RFID enabled temperature sensor. Sens. Actuators A Phys. 2013, 201, 105–113. [Google Scholar] [CrossRef]
- Li, Q.; Liu, J.; Yang, B.; Lu, L.; Yi, Z.; Tian, Y.; Liu, J. Highly sensitive surface acoustic wave flexible strain sensor. IEEE Electron Device Lett. 2019, 40, 961–964. [Google Scholar] [CrossRef]
- Mandel, C.; Schüßler, M.; Nickel, M.; Kubina, B.; Jakoby, R.; Pöpperl, M.; Vossiek, M. Higher order pulse modulators for time domain chipless RFID tags with increased information density. In Proceedings of the 2015 European Microwave Conference (EuMC), Paris, France, 7–10 September 2015; pp. 100–103. [Google Scholar]
- Pöpperl, M.; Carlowitz, C.; Vossiek, M.; Mandel, C.; Jakoby, R. An ultra-wideband time domain reflectometry chipless RFID system with higher order modulation schemes. In Proceedings of the 2016 German Microwave Conference (GeMiC), Bochum, Germany, 14–16 March 2016; pp. 401–404. [Google Scholar]
- Corchia, L.; Monti, G.; De Benedetto, E.; Tarricone, L. Low-cost chipless sensor tags for wearable user interfaces. IEEE Sens. J. 2019, 19, 10046–10053. [Google Scholar] [CrossRef]
- Vena, A.; Perret, E.; Tedjini, S. A Fully Printable Chipless RFID Tag With Detuning Correction Technique. IEEE Microw. Wirel. Compon. Lett. 2012, 22, 209–211. [Google Scholar] [CrossRef]
- Song, J.; Li, X.; Zhu, H. Multiresonator-based chipless RFID system for low-cost application. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL), Singapore, 19–22 November 2017; pp. 543–547. [Google Scholar]
- Deng, F.; He, Y.; Li, B.; Song, Y.; Wu, X. Design of a slotted chipless RFID humidity sensor tag. Sens. Actuators B Chem. 2018, 264, 255–262. [Google Scholar] [CrossRef]
- Feng, Y.; Xie, L.; Chen, Q.; Zheng, L.R. Low-cost printed chipless RFID humidity sensor tag for intelligent packaging. IEEE Sens. J. 2014, 15, 3201–3208. [Google Scholar] [CrossRef]
- Karmakar, N.C.; Amin, E.M.; Saha, J.K. Chipless RFID Sensors; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Preradovic, S.; Karmakar, N.C. Chipless RFID: Bar code of the future. IEEE Microw. Mag. 2010, 11, 87–97. [Google Scholar] [CrossRef]
- Vena, A.; Babar, A.A.; Sydänheimo, L.; Tentzeris, M.; Ukkonen, L. A novel near-transparent ASK-reconfigurable inkjet-printed chipless RFID tag. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 753–756. [Google Scholar] [CrossRef]
- Rifai, A.; Debourg, E.; Bouaziz, S.; Traille, A.; Pons, P.; Aubert, H.; Tentzeris, M. Wireless chipless passive microfluidic temperature sensor. In Proceedings of the 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Barcelona, Spain, 16–20 June 2013; pp. 1024–1027. [Google Scholar]
- Balbin, I.; Karmakar, N.C. Phase-encoded chipless RFID transponder for large-scale low-cost applications. IEEE Microw. Wirel. Compon. Lett. 2009, 19, 509–511. [Google Scholar] [CrossRef]
- Herrojo, C.; Paredes, F.; Mata-Contreras, J.; Martín, F. Chipless-RFID: A Review and Recent Developments. Sensors 2019, 19, 3385. [Google Scholar] [CrossRef] [Green Version]
- Jedermann, R.; Lang, W. Semi-passive RFID and beyond: Steps towards automated quality tracing in the food chain. Int. J. Radio Freq. Identif. Technol. Appl. 2007, 1, 247–259. [Google Scholar] [CrossRef]
- Krikidis, I.; Timotheou, S.; Nikolaou, S.; Zheng, G.; Ng, D.; Schober, R. Simultaneous wireless information and power transfer in modern communication systems. IEEE Commun. Mag. 2014, 52, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Lyu, B.; Yang, Z.; Gui, G.; Feng, Y. Wireless powered communication networks assisted by backscatter communication. IEEE Access 2017, 5, 7254–7262. [Google Scholar] [CrossRef]
- Perera, T.D.P.; Jayakody, D.N.K.; Sharma, S.K.; Chatzinotas, S.; Li, J. Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges. IEEE Commun. Surv. Tutor. 2017, 20, 264–302. [Google Scholar] [CrossRef] [Green Version]
- Xiong, K.; Wang, B.; Liu, K.R. Rate-energy region of SWIPT for MIMO broadcasting under nonlinear energy harvesting model. IEEE Trans. Wirel. Commun. 2017, 16, 5147–5161. [Google Scholar] [CrossRef]
- Tang, J.; Luo, J.; Liu, M.; So, D.K.; Alsusa, E.; Chen, G.; Wong, K.K.; Chambers, J.A. Energy efficiency optimization for NOMA with SWIPT. IEEE J. Sel. Top. Signal Process. 2019, 13, 452–466. [Google Scholar] [CrossRef] [Green Version]
- Camana, M.R.; Tuan, P.V.; Koo, I. Optimised power allocation for a power beacon-assisted SWIPT system with a power-splitting receiver. Int. J. Electron. 2019, 106, 415–439. [Google Scholar] [CrossRef]
- Benkhelifa, F.; Tourki, K.; Alouini, M.S. Proactive spectrum sharing for SWIPT in MIMO cognitive radio systems using antenna switching technique. IEEE Trans. Green Commun. Netw. 2017, 1, 204–222. [Google Scholar] [CrossRef]
- Magno, M.; Benini, L. An ultra low power high sensitivity wake-up radio receiver with addressing capability. In Proceedings of the 2014 IEEE 10th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Larnaca, Cyprus, 8–10 October 2014; pp. 92–99. [Google Scholar]
- Ba, H.; Demirkol, I.; Heinzelman, W. Passive wake-up radios: From devices to applications. Ad Hoc Networks 2013, 11, 2605–2621. [Google Scholar] [CrossRef]
- Kamalinejad, P.; Keikhosravy, K.; Magno, M.; Mirabbasi, S.; Leung, V.C.; Benini, L. A high-sensitivity fully passive wake-up radio front-end for wireless sensor nodes. In Proceedings of the 2014 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 10–13 January 2014; pp. 209–210. [Google Scholar]
- Le-Huy, P.; Roy, S. Low-power wake-up radio for wireless sensor networks. Mob. Netw. Appl. 2010, 15, 226–236. [Google Scholar] [CrossRef]
- Boaventura, A.S.; Carvalho, N.B. A low-power wakeup radio for application in WSN-based indoor location systems. Int. J. Wirel. Inf. Netw. 2013, 20, 67–73. [Google Scholar] [CrossRef]
- Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Al-Sarawi, S.; Anbar, M.; Alieyan, K.; Alzubaidi, M. Internet of Things (IoT) communication protocols. In Proceedings of the 2017 8th International conference on information technology (ICIT), Amman, Jordan, 17–18 May 2017; pp. 685–690. [Google Scholar]
- PN532C1. Available online: https://www.nxp.com/docs/en/nxp/data-sheets/PN532_C1.pdf (accessed on 9 September 2020).
- Tosi, J.; Taffoni, F.; Santacatterina, M.; Sannino, R.; Formica, D. Performance evaluation of Bluetooth low energy: A systematic review. Sensors 2017, 17, 2898. [Google Scholar] [CrossRef] [Green Version]
- nRF52810. Available online: https://infocenter.nordicsemi.com/pdf/nRF52810_PS_v1.0.pdf (accessed on 9 September 2020).
- Nixon, M.; Rock, T.R. A Comparison of WirelessHART and ISA100. 11a; Whitepaper, Emerson Process Management: St. Louis, MS, EUA, 2012; pp. 1–36. [Google Scholar]
- Jecan, E.; Pop, C.; Padrah, Z.; Ratiu, O.; Puschita, E. A dual-standard solution for industrial Wireless Sensor Network deployment: Experimental testbed and performance evaluation. In Proceedings of the 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS), Imperia, Italy, 13–15 June 2018; pp. 1–9. [Google Scholar]
- WiHART Wireless Module. Available online: https://centerotech.com/wp-content/uploads/2020/06/WiHART-datasheet-2020.06_web.pdf (accessed on 9 September 2020).
- WISA ISA100 Wireless Module. Available online: https://centerotech.com/wp-content/uploads/2020/06/WISA-datasheet-2020.06_web.pdf (accessed on 9 September 2020).
- Aju, O.G. A survey of zigbee wireless sensor network technology: Topology, applications and challenges. Int. J. Comput. Appl. 2015, 130, 47–55. [Google Scholar]
- ESP32 Series. Available online: https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf (accessed on 9 September 2020).
- Lee, J.S.; Su, Y.W.; Shen, C.C. A Comparative study of Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In Proceedings of the IECON 2007-33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 5–8 November 2007; pp. 46–51. [Google Scholar]
- Shukla, S.; Khare, V.; Garg, S.; Sharma, P. Comparative Study of 1G, 2G, 3G and 4G. J. Eng. Comput. Appl. Sci 2013, 2, 55–63. [Google Scholar]
- Skywire—GPRS Embedded Cellular Modem Datasheet. 2017. Available online: https://nimbelink.com/Documentation/Skywire/2G_GPRS/30007_NL-SW-GPRS_Datasheet.pdf (accessed on 8 November 2020).
- Li, S.; Da Xu, L.; Zhao, S. 5G Internet of Things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Foubert, B.; Mitton, N. Long-Range Wireless Radio Technologies: A Survey. Future Internet 2020, 12, 13. [Google Scholar] [CrossRef] [Green Version]
- eRIC Sigfox AT. 2016. Available online: https://pt.mouser.com/datasheet/2/743/eRIC_Sigfox_Datasheet_1.3-1218607.pdf (accessed on 8 November 2020).
- RN2483: Low-Power Long Range LoRa Technology Transceiver Module. 2017. Available online: http://ww1.microchip.com/downloads/en/devicedoc/50002346c.pdf (accessed on 8 November 2020).
- SARA-N2 series. 2019. Available online: https://www.u-blox.com/en/docs/UBX-15025564 (accessed on 8 November 2020).
- Collotta, M.; Pau, G.; Talty, T.; Tonguz, O.K. Bluetooth 5: A concrete step forward toward the IoT. IEEE Commun. Mag. 2018, 56, 125–131. [Google Scholar] [CrossRef]
- Noreen, U.; Bounceur, A.; Clavier, L. A study of LoRa low power and wide area network technology. In Proceedings of the 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Fez, Morocco, 22–24 May 2017; pp. 1–6. [Google Scholar]
- Datasheet SHTC3 Humidity and Temperature Sensor IC. 2019. Available online: https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/2_Humidity_Sensors/Datasheets/Sensirion_Humidity_Sensors_SHTC3_Datasheet.pdf (accessed on 8 November 2020).
Frequency Band | Range | Data Rate | Consumption | |
---|---|---|---|---|
NFC | 13.56 MHz | 10 cm | 400 kbit/s | 60 mA |
BLE | 2.4 GHz | 1 Km | 2 Mbit/s | 7.5 mA |
ZigBee | 2.4 GHz | 100 m | 250 kbit/s | 10 mA |
Wi-Fi | 2.4, 3.6, 5 GHz | 100 m | 1.3 Gbit/s | 240 mA |
Mobile Networks (2G/3G) | 900 MHz, 1.8 GHz, 2.1 GHz | - | 100 kbit/s (2G), 8 Mbit/s (3G) | 330 mA |
Sigfox | 868 MHz | 10 Km | 100/600 bit/s | 49 mA |
LoRa | 868 MHz | 10–15 Km | 50 kbit/s | 39 mA |
NB-IoT | 700, 800, 900 MHz | - | 200/50 kbit/s | 220 mA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, F.; Correia, R.; Pinho, P.; Lopes, S.I.; Carvalho, N.B. Challenges in Resource-Constrained IoT Devices: Energy and Communication as Critical Success Factors for Future IoT Deployment. Sensors 2020, 20, 6420. https://doi.org/10.3390/s20226420
Pereira F, Correia R, Pinho P, Lopes SI, Carvalho NB. Challenges in Resource-Constrained IoT Devices: Energy and Communication as Critical Success Factors for Future IoT Deployment. Sensors. 2020; 20(22):6420. https://doi.org/10.3390/s20226420
Chicago/Turabian StylePereira, Felisberto, Ricardo Correia, Pedro Pinho, Sérgio I. Lopes, and Nuno Borges Carvalho. 2020. "Challenges in Resource-Constrained IoT Devices: Energy and Communication as Critical Success Factors for Future IoT Deployment" Sensors 20, no. 22: 6420. https://doi.org/10.3390/s20226420
APA StylePereira, F., Correia, R., Pinho, P., Lopes, S. I., & Carvalho, N. B. (2020). Challenges in Resource-Constrained IoT Devices: Energy and Communication as Critical Success Factors for Future IoT Deployment. Sensors, 20(22), 6420. https://doi.org/10.3390/s20226420