Modeling and Implementation of TEG-Based Energy Harvesting System for Steam Sterilization Surveillance Sensor Node
Abstract
:1. Introduction
1.1. Internet of Medical Things (IoMT)
1.2. Hospital Steam Sterilization and Its Effects on Sensor Systems, Their Power Supply, and Their Specifications
- Maintenance free: absolute requirement due to the work overload of hospital staff.
- Harsh environment resistant and safe: the whole design should assure increased safety and reliability against steam sterilization environment.
- The size of the device needs to fit the design of the surgical container.
2. Materials and Methods
2.1. Power Requirements of the Sensor System
2.2. Modeling of the TEG-Based Self-Powered System
2.2.1. Thermal Insulation Materials Selection
2.2.2. Prototype Design
2.2.3. Simulation Setup
2.2.4. Modeling of the TEG
2.3. Practical Implementation of the TEG-Based Energy Harvesting System
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kanan, R.; Elhassan, O. Batteryless radio system for hospital application. In Proceedings of the 2016 SAI Computing Conference (SAI), London, UK, 13–15 July 2016; pp. 939–945. [Google Scholar]
- Neumann, K.; Reichl, V.; Rong, O. Dringender Handlungsbedarf für die Zukunft des digitalen Krankenhauses. HNO 2019, 67, 350–355. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Wen, B.; Xun, Y.; Liu, J. Connecting Intelligent Things in Smart Hospitals Using NB-IoT. IEEE Internet Things J. 2018, 5, 1550–1560. [Google Scholar] [CrossRef]
- Farahani, B.; Firouzi, F.; Chang, V.; Badaroglu, M.; Constant, N.; Mankodiya, K. Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare. Futur. Gener. Comput. Syst. 2018, 78, 659–676. [Google Scholar] [CrossRef] [Green Version]
- Huang, A.Y.; Joerger, G.; Fikfak, V.; Salmon, R.; Dunkin, B.J.; Bass, B.L.; Garbey, M. The SmartOR: A distributed sensor network to improve operating room efficiency. Surg. Endosc. 2017, 31, 3590–3595. [Google Scholar] [CrossRef]
- Mahfouz, M.R.; To, G.; Kuhn, M.J. Smart instruments: Wireless technology invades the operating room. In Proceedings of the 2012 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), Santa Clara, CA, USA, 15–18 January 2012; pp. 33–36. [Google Scholar]
- Solon, J.G.; Killeen, S. Decontamination and sterilization. Surgery 2015, 33, 572–578. [Google Scholar] [CrossRef]
- Seavey, R. High-level disinfection, sterilization, and antisepsis: Current issues in reprocessing medical and surgical instruments. Am. J. Infect. Control 2013, 41, S111–S117. [Google Scholar] [CrossRef] [PubMed]
- Seavey, R. Immediate use steam sterilization: Moving beyond current policy. Am. J. Infect. Control 2013, 41, S46–S48. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.V.; Williams, J.A.R.; Gorbenko, K. The work of sterile processing departments: An exploratory study using qualitative interviews and a quantitative process database. Am. J. Infect. Control 2019, 47, 816–821. [Google Scholar] [CrossRef]
- Mubarak, M.T.; Ozsahin, I.; Ozsahin, D.U. Evaluation of Sterilization Methods for Medical Devices. In Proceedings of the 2019 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, UAE, 26 March–10 April 2019; pp. 1–4. [Google Scholar]
- Rutala, W.A.; Weber, D.J. Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2008; 163p. [Google Scholar]
- Rutala, W.A.; Weber, D.J. Disinfection, sterilization, and antisepsis: An overview. Am. J. Infect. Control 2016, 44, e1–e6. [Google Scholar] [CrossRef]
- Dion, M.; Parker, W. Steam Sterilization Principles. Pharm. Eng. 2013, 33, 60–69. [Google Scholar]
- European Committee for Standardization (CEN). The European Standard EN285: Sterilization—Steam Sterilizers—Large Sterilizers: 2006 + A2:2009; CEN: Brussels, Belgium, 2006. [Google Scholar]
- Maxim Integrated. Sterilization Methods and Their Impact on Medical Devices Containing Electronics; Application Note 5068; Maxim Integrated: San Jose, CA, USA, 2011. [Google Scholar]
- Jaziri, N.; Boughamoura, A.; Müller, J.; Mezghani, B.; Tounsi, F.; Ismail, M. A comprehensive review of Thermoelectric Generators: Technologies and common applications. Energy Rep. 2019. [Google Scholar] [CrossRef]
- Champier, D. Thermoelectric generators: A review of applications. Energy Convers. Manag. 2017, 140, 167–181. [Google Scholar] [CrossRef]
- Kanan, R.; Bensalem, R. Energy harvesting for wearable wireless health care systems. In Proceedings of the 2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar, 3–6 April 2016; pp. 1–6. [Google Scholar]
- Wu, T.; Wu, F.; Redoute, J.-M.; Yuce, M.R. An Autonomous Wireless Body Area Network Implementation towards IoT Connected Healthcare Applications. IEEE Access 2017, 5, 11413–11422. [Google Scholar] [CrossRef]
- Qi, J.; Yang, P.; Min, G.; Amft, O.; Dong, F.; Xu, L. Advanced internet of things for personalised healthcare systems: A survey. Pervasive Mob. Comput. 2017, 41, 132–149. [Google Scholar] [CrossRef]
- Ghomian, T.; Mehraeen, S. Survey of energy scavenging for wearable and implantable devices. Energy 2019, 178, 33–49. [Google Scholar] [CrossRef]
- Nozariasbmarz, A.; Collins, H.; Dsouza, K.; Polash, M.H.; Hosseini, M.; Hyland, M.; Liu, J.; Malhotra, A.; Ortiz, F.M.; Mohaddes, F.; et al. Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Appl. Energy 2020, 258, 114069. [Google Scholar] [CrossRef]
- Zhao, R.; Liu, J.; Gu, J. Simulation and experimental study on lithium ion battery short circuit. Appl. Energy 2016, 173, 29–39. [Google Scholar] [CrossRef]
- Daniol, M.; Böhler, L.; Keller, A.; Sroka, R. Autoclave Sterilization Powered Medical IoT Sensor Systems. In Proceedings of the XXII International Seminar of Metrology “Methods and Techniques of Signal Processing in Physical Measurements” (MSM2018), Rzeszów-Arłamów, Poland, 17–20 September 2019; pp. 31–43. [Google Scholar]
- Wright, D.R.; Garcia-Araez, N.; Owen, J.R. Review on high temperature secondary Li-ion batteries. Energy Procedia 2018, 151, 174–181. [Google Scholar] [CrossRef]
- Lin, X.; Salari, M.; Arava, L.M.R.; Ajayan, P.M.; Grinstaff, M.W. High temperature electrical energy storage: Advances, challenges, and frontiers. Chem. Soc. Rev. 2016, 45, 5848–5887. [Google Scholar] [CrossRef]
- Börger, A.; Mertens, J.; Wenzl, H. Thermal runaway and thermal runaway propagation in batteries: What do we talk about? J. Energy Storage 2019, 24, 100649. [Google Scholar] [CrossRef]
- Escobar-Hernandez, H.U.; Gustafson, R.M.; Papadaki, M.I.; Sachdeva, S.; Mannan, M.S. Thermal Runaway in Lithium-Ion Batteries: Incidents, Kinetics of the Runaway and Assessment of Factors Affecting Its Initiation. J. Electrochem. Soc. 2016, 163, A2691–A2701. [Google Scholar] [CrossRef]
- George, J.; Compagno, T.; Waldron, F.; Barrett, J. Reliability analysis of plastic encapsulated coin batteries under harsh environmental conditions. In Proceedings of the 2012 4th Electronic System-Integration Technology Conference, Amsterdam, The Netherlands, 17–20 September 2012; pp. 1–3. [Google Scholar]
- Böhler, L.; Daniol, M.; Keller, A.; Sroka, R. Heat Resistant Monitoring System for Medical Sterile Containers. In Proceedings of the XXII International Seminar of Metrology “Methods and Techniques of Signal Processing in Physical Measurements” (MSM2018), Rzeszów-Arłamów, Poland, 17–20 September 2019; pp. 13–30. [Google Scholar]
- Stergar, J.; Maver, U. Review of aerogel-based materials in biomedical applications. J. Sol-Gel Sci. Technol. 2016, 77, 738–752. [Google Scholar] [CrossRef]
- Samson, D.; Kluge, M.; Becker, T.; Schmid, U. Energy harvesting for autonomous wireless sensor nodes in aircraft. Procedia Eng. 2010, 5, 1160–1163. [Google Scholar] [CrossRef] [Green Version]
- Dziurdzia, P. Simulation tool for virtual estimation of harvested thermoelectric energy supplying wireless sensor nodes. In Proceedings of the 2010 2nd International Conference on Software Technology and Engineering, San Juan, PR, USA, 3–5 October 2010; Volume 1, pp. 414–418. [Google Scholar]
- Mirocha, A.; Dziurdzia, P. Improved electrothermal model of the thermoelectric generator implemented in SPICE. In Proceedings of the 2008 International Conference on Signals and Electronic Systems, Krakow, Poland, 14–17 September 2008; pp. 317–320. [Google Scholar]
- Siouane, S.; Jovanović, S.; Poure, P. Equivalent Electrical Circuits of Thermoelectric Generators under Different Operating Conditions. Energies 2017, 10, 386. [Google Scholar] [CrossRef] [Green Version]
- Kubov, V.I.; Dymytrov, Y.Y.; Kubova, R.M. LTspice-model of thermoelectric Peltier-Seebeck element. In Proceedings of the 2016 IEEE 36th International Conference on Electronics and Nanotechnology (ELNANO), Kiev, Ukraine, 19–21 April 2016; pp. 47–51. [Google Scholar]
- Afghan, S.A.; Géza, H. Modelling and Analysis of Energy Harvesting in Internet of Things (IoT): Characterization of a Thermal Energy Harvesting Circuit for IoT based Applications with LTC3108. Energies 2019, 12, 3873. [Google Scholar] [CrossRef] [Green Version]
- Lineykin, S.; Ben-Yaakov, S. Modeling and Analysis of Thermoelectric Modules. IEEE Trans. Ind. Applicat. 2007, 43, 505–512. [Google Scholar] [CrossRef]
- De Baetrelier, E.; Goedertier, W.; De Mey, G. A survey of the thermal stability of an active heat sink. Microelectron. Reliab. 1997, 37, 1805–1812. [Google Scholar] [CrossRef]
- Nesarajah, M.; Frey, G. Thermoelectric power generation: Peltier element versus thermoelectric generator. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 4252–4257. [Google Scholar]
- Toh, T.T.; Wright, S.W.; Kiziroglou, M.E.; Mitcheson, P.D.; Yeatman, E.M. A dual polarity, cold-starting interface circuit for heat storage energy harvesters. Sensors Actuators A Phys. 2014, 211, 38–44. [Google Scholar] [CrossRef]
Material Parameters | Henkel FP4460 Epoxy | Epotek OD2002 Epoxy | Mold Max 60 Silicone |
---|---|---|---|
Modulus of Elasticity [G Pa] | 10.8 | 1.815 | 0.006 |
Max. Operating Temperature [°C] | 150 | 225 | 294 |
Thermal Expansion [ppm/°C] | 20 | 46 | 260 |
Thermal Conductivity [W/(m·K)] | 0.68 | 0.3 | 0.21 |
Thickness [mm] | 1, 3, 5 | 1, 3, 5 | 1, 3, 5 |
Material | Density [kg/m3] | Thermal Conductivity [W/(m·K)] | Specific Heat [J/(kg·K)] |
---|---|---|---|
Aluminum | 2700 | 235 | 897 |
Aerogel | 120 | 0.025 | 1500 |
Steel | 7870 | 60 | 480 |
Bi2Te3 | 7740 | 1.6 | 200 |
Al2O3 | 3720 | 25 | 880 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daniol, M.; Boehler, L.; Sroka, R.; Keller, A. Modeling and Implementation of TEG-Based Energy Harvesting System for Steam Sterilization Surveillance Sensor Node. Sensors 2020, 20, 6338. https://doi.org/10.3390/s20216338
Daniol M, Boehler L, Sroka R, Keller A. Modeling and Implementation of TEG-Based Energy Harvesting System for Steam Sterilization Surveillance Sensor Node. Sensors. 2020; 20(21):6338. https://doi.org/10.3390/s20216338
Chicago/Turabian StyleDaniol, Mateusz, Lukas Boehler, Ryszard Sroka, and Anton Keller. 2020. "Modeling and Implementation of TEG-Based Energy Harvesting System for Steam Sterilization Surveillance Sensor Node" Sensors 20, no. 21: 6338. https://doi.org/10.3390/s20216338
APA StyleDaniol, M., Boehler, L., Sroka, R., & Keller, A. (2020). Modeling and Implementation of TEG-Based Energy Harvesting System for Steam Sterilization Surveillance Sensor Node. Sensors, 20(21), 6338. https://doi.org/10.3390/s20216338