Next Article in Journal
An Ultra-Wide Load Range Voltage Converter Using Proactive Phase Frequency Modulation for IoT Sensors
Next Article in Special Issue
Demonstration of Three-Dimensional Indoor Visible Light Positioning with Multiple Photodiodes and Reinforcement Learning
Previous Article in Journal
Learning from Routing Information for Detecting Routing Misbehavior in Ad Hoc Networks
Previous Article in Special Issue
A Recursive Algorithm for Indoor Positioning Using Pulse-Echo Ultrasonic Signals
Article

Indoor Localization Based on Infrared Angle of Arrival Sensor Network

University of Rijeka, Faculty of Engineering, 51000 Rijeka, Croatia
*
Author to whom correspondence should be addressed.
Sensors 2020, 20(21), 6278; https://doi.org/10.3390/s20216278
Received: 8 October 2020 / Revised: 31 October 2020 / Accepted: 2 November 2020 / Published: 4 November 2020
(This article belongs to the Special Issue Sensors and Systems for Indoor Positioning)
Accurate, inexpensive, and reliable real-time indoor localization holds the key to the full potential of the context-aware applications and location-based Internet of Things (IoT) services. State-of-the-art indoor localization systems are coping with the complex non-line-of-sight (NLOS) signal propagation which hinders the use of proven multiangulation and multilateration methods, as well as with prohibitive installation costs, computational demands, and energy requirements. In this paper, we present a novel sensor utilizing low-range infrared (IR) signal in the line-of-sight (LOS) context providing high precision angle-of-arrival (AoA) estimation. The proposed sensor is used in the pragmatic solution to the localization problem that avoids NLOS propagation issues by exploiting the powerful concept of the wireless sensor network (WSN). To demonstrate the proposed solution, we applied it in the challenging context of the supermarket cart navigation. In this specific use case, a proof-of-concept navigation system was implemented with the following components: IR-AoA sensor prototype and the corresponding WSN used for cart localization, server-side application programming interface (API), and client application suite consisting of smartphone and smartwatch applications. The localization performance of the proposed solution was assessed in, altogether, four evaluation procedures, including both empirical and simulation settings. The evaluation outcomes are ranging from centimeter-level accuracy achieved in static-1D context up to 1 m mean localization error obtained for a mobile cart moving at 140 cm/s in a 2D setup. These results show that, for the supermarket context, appropriate localization accuracy can be achieved, along with the real-time navigation support, using readily available IR technology with inexpensive hardware components. View Full-Text
Keywords: infrared sensor; angle of arrival; indoor localization; wireless sensor networks; navigation infrared sensor; angle of arrival; indoor localization; wireless sensor networks; navigation
Show Figures

Figure 1

MDPI and ACS Style

Arbula, D.; Ljubic, S. Indoor Localization Based on Infrared Angle of Arrival Sensor Network. Sensors 2020, 20, 6278. https://doi.org/10.3390/s20216278

AMA Style

Arbula D, Ljubic S. Indoor Localization Based on Infrared Angle of Arrival Sensor Network. Sensors. 2020; 20(21):6278. https://doi.org/10.3390/s20216278

Chicago/Turabian Style

Arbula, Damir, and Sandi Ljubic. 2020. "Indoor Localization Based on Infrared Angle of Arrival Sensor Network" Sensors 20, no. 21: 6278. https://doi.org/10.3390/s20216278

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop