Evaluation of Strain Transition Properties between Cast-In Fibre Bragg Gratings and Cast Aluminium during Uniaxial Straining
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fibre Bragg Gratings
2.2. Cast Materials
2.3. Neutron Diffraction
2.4. X-ray Computed Tomography
2.5. Mathematical Operations
3. Experimental Setup and Simulation Model
3.1. Experimental Setup
3.2. Simulation
3.3. Porosity Evaluation by Computed Tomography
4. Results
4.1. Porosity Evaluation
4.2. Strain Evaluation during Tensile Testing
4.3. Evaluation of the Strain Transition Area
4.4. Spectra Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Warnke, E. Mit Eigenspannungen leben: Entstehung, Auswirkungen, Messung, Berechnung und Vermeidung von Eigenspannungen, Ausblick. In Konstruieren und Giessen; Bundesverband der Deutschen Gießerei-Industrie: Düsseldorf, Germany, 2008; pp. 37–40. [Google Scholar]
- Weraneck, K.; Heilmeier, F.; Lindner, M.; Graf, M.; Jakobi, M.; Volk, W.; Roths, J.; Koch, A.W. Strain Measurement in Aluminium Alloy during the Solidification Process Using Embedded Fibre Bragg Gratings. Sensors 2016, 16. [Google Scholar] [CrossRef] [Green Version]
- Luyckx, G.; Voet, E.; Lammens, N.; Degrieck, J. Strain measurements of composite laminates with embedded fibre bragg gratings: Criticism and opportunities for research. Sensors 2011, 11, 384–408. [Google Scholar] [CrossRef] [Green Version]
- Prussak, R.; Stefaniak, D.; Kappel, E.; Hühne, C.; Sinapius, M. Smart cure cycles for fiber metal laminates using embedded fiber Bragg grating sensors. Compos. Struct. 2019, 213, 252–260. [Google Scholar] [CrossRef]
- Mulle, M.; Yudhanto, A.; Lubineau, G.; Yaldiz, R.; Schijve, W.; Verghese, N. Internal strain assessment using FBGs in a thermoplastic composite subjected to quasi-static indentation and low-velocity impact. Compos. Struct. 2019, 215, 305–316. [Google Scholar] [CrossRef]
- Li, F.; Du, Y.; Sun, X.; Zhao, W. Sensing performance assessment of twisted CFRP with embedded fiber Bragg grating sensors subjected to monotonic and fatigue loading. Sens. Actuators A Phys. 2018, 271, 153–161. [Google Scholar] [CrossRef]
- Nair, A.; Cai, C.S.; Kong, X.; Hou, S. Bridge Retrofitting Using FRP-Wrapped Balsa Wood Deck: Experimental Study and Field Evaluation. J. Aerosp. Eng. 2019, 32, 04019065. [Google Scholar] [CrossRef]
- Cinitha, A.; Sampath, V.; Kesavan, K. Strain monitoring of low carbon steel in a corrosive environment using fiber Bragg technology. Constr. Build. Mater. 2019, 217, 265–272. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, Q.; Peng, W. Fiber-optic Fabry—Perot pressure sensor for down-hole application. Opt. Lasers Eng. 2019, 121, 289–299. [Google Scholar] [CrossRef]
- Heilmeier, F.; Koos, R.; Weraneck, K.; Lindner, M.; Jakobi, M.; Roths, J.; Koch, A.W.; Volk, W. In-situ strain measurements in the plastic deformation regime inside casted parts using fibre-optical strain sensors. Prod. Eng. 2019, 618, 271. [Google Scholar] [CrossRef]
- Jülich, F.; Aulbach, L.; Wilfert, A.; Kratzer, P.; Kuttler, R.; Roths, J. Gauge factors of fibre Bragg grating strain sensors in different types of optical fibres. Meas. Sci. Technol. 2013, 24, 094007. [Google Scholar] [CrossRef]
- Deutsches Institut für Normung e.V. Aluminium und Aluminiumlegierungen—Chemische Zusammensetzung und Mechanische Eigenschaften; Beuth Verlag GmbH: Berlin, Germany, 2019. [Google Scholar]
- Heilmeier, F.; Koos, R.; Hornberger, P.; Hiller, J.; Weraneck, K.; Jakobi, M.; Koch, A.W.; Volk, W. Calibration of cast-in fibre Bragg gratings for internal strain measurements in cast aluminium by using neutron diffraction. Measurement 2020, 163, 107939. [Google Scholar] [CrossRef]
- Weraneck, K. Strukturüberwachung Mittels Eingebetteter Faser-Bragg-Gitter; Universitätsbibliothek der TU München: München, Germany, 2018. [Google Scholar]
- Erdogan, T. Fiber grating spectra. J. Light. Technol. 1997, 15, 1277–1294. [Google Scholar] [CrossRef] [Green Version]
- Rao, Y.J. In-fibre Bragg grating sensors. Meas. Sci. Technol. 1997, 8, 355–375. [Google Scholar] [CrossRef]
- Wagreich, R.B.; Sirkis, J.S. Distinguishing Fiber Bragg Grating Strain Effects. In Proceedings of the 12th International Conference on Optical Fiber Sensors, Williamsburg, VA, USA, 28–31 October 1997; pp. 20–23. [Google Scholar] [CrossRef]
- Werneck, M.; Allil, R.C.S.B.; Ribeiro, B.A.; de Nazaré, F.V.B. A Guide to Fiber Bragg Grating Sensors. In Current Trends in Short- and Long-Period Fiber Gratings; Cuadrado-Laborde, C., Ed.; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Mondal, D.P.; Jha, N.; Badkul, A.; Das, S. Effect of Al—TiB master alloy addition on microstructure, wear and compressive deformation behaviour of aluminum alloys. Trans. Nonferrous Met. Soc. China 2012, 22, 1001–1011. [Google Scholar] [CrossRef]
- Randau, C. Entwicklungen am Neutronendiffraktometer STRESS-SPEC für Schnelle und Lokale Polfigurmessungen zur Bestimmung Ortsaufgelöster Texturen: Dissertation. Ph.D. Thesis, Technische Universität Clausthal, Clausthal, Germany, 2012. [Google Scholar]
- Röhrmoser, A. Core model of new German neutron source FRM II. Nucl. Eng. Des. 2010, 240, 1417–1432. [Google Scholar] [CrossRef]
- Gabrys, B.J. Applications of Neutron Scattering to Soft Condensed Matter; Chapman and Hall/CRC: Boca Raton, FL, USA, 2014. [Google Scholar]
- Meier, L. In-Situ-Messung der Phasenumwandlungskinetik von Ausferritischem Guasseisen; utg-Forschungsberichte; Shaker Verlag: Aachen, Germany, 2017; Volume 76. [Google Scholar]
- Bragg, W.H.; Bragg, W.L. The Reflection of X-rays by Crystals. Proc. R. Soc. A Math. Phys. Eng. Sci. 1913, 88, 428–438. [Google Scholar] [CrossRef]
- ISO International Organization for Standardization. Non-Destructive Testing: Standard Test Method for Determining Residual Stresses by Neutron Diffraction; ISO: Geneva, Switzerland, 2005. [Google Scholar]
- Hanke, R.; Fuchs, T.; Salamon, M.; Zabler, S. X-ray microtomography for materials characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods; Woodhead Publishingr: Sawston, Cambridge, 2016; pp. 45–79. [Google Scholar] [CrossRef]
- Buzug, T. Computed Tomography: From Photon Statistics to Modern Cone-Beam CT; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Rodet, T.; Noo, F.; Defrise, M. The cone-beam algorithm of Feldkamp, Davis, and Kress preserves oblique line integrals. Med. Phys. 2004, 31, 1972–1975. [Google Scholar] [CrossRef]
- Feldkamp, L.A.; Davis, L.C.; Kress, J.W. Practical cone-beam algorithm. J. Opt. Soc. Am. A 1984, 1, 612. [Google Scholar] [CrossRef] [Green Version]
- Lange, K.; Pöhlandt, K. Vergleichende Betrachtung der Verfahren zur Prüfung der Plastischen Eigenschaften Metallischer Werkstoffe; Springer: Berlin/Heidelberg, Germany, 1984; Volume 80. [Google Scholar] [CrossRef]
- Papula, L. Mathematik für Ingenieure und Naturwissenschaftler; Vieweg+Teubner Verlag: Wiesbaden, Germany, 2011. [Google Scholar] [CrossRef]
- Hofmann, M.; Schneider, R.; Seidl, G.A.; Rebelo-Kornmeier, J.; Wimpory, R.C.; Garbe, U.; Brokmeier, H.G. The new materials science diffractometer STRESS-SPEC at FRM-II. Phys. B Condens. Matter 2006, 385–386, 1035–1037. [Google Scholar] [CrossRef]
- Hoelzel, M.; Gan, W.M.; Hofmann, M.; Randau, C.; Seidl, G.; Jüttner, P.; Schmahl, W.W. Rotatable multifunctional load frames for neutron diffractometers at FRM II—Design, specifications and applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 711, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Reihle, M.M. Entstehung und Ausprägung von Eigenspannungen in Verbundgussteilen. Ph.D. Thesis, Technische Universität München, Munich, Germany, 2016. [Google Scholar]
- Firsching, M.; Salamon, M.; Keßling, P.M.; Nachtrab, F.; Krumm, M.; Uhlmann, N.; Hanke, R. Micro Structural Analysis of AlSi6Cu4 Using Quantitative Computed Tomography Methods; Fraunhofer IIS: Erlangen, Germany, 2010. [Google Scholar]
- Reinhart, C. VGStudio MAX Referenzhandbuch; Volume Graphics GmbH: Heidelberg, Germany, 2018. [Google Scholar]
- Schöbel, M.; Baumgartner, G.; Gerth, S.; Bernardi, J.; Hofmann, M. Microstresses and crack formation in AlSi7MgCu and AlSi17Cu4 alloys for engine components. Acta Mater. 2014, 81, 401–408. [Google Scholar] [CrossRef]
- Deutsches Institut für Normung e.V. Metallische Werkstoffe—Zugversuch: Teil 1: Prüfverfahren bei Raumtemperatur; Beuth-Verlag GmbH: Berlin, Germany, 2019. [Google Scholar]
- Lammens, N.; Kinet, D.; Chah, K.; Luyckx, G.; Caucheteur, C.; Degrieck, J.; Mégret, P. Residual strain monitoring of out-of-autoclave cured parts by use of polarization dependent loss measurements in embedded optical fiber Bragg gratings. Compos. Part A Appl. Sci. Manuf. 2013, 52, 38–44. [Google Scholar] [CrossRef]
Fibre Type | Single Mode SMF28 |
---|---|
fibre diameter | m |
grating type | femtosecond FBG |
grating length | 3 mm |
initial wavelength | 1550 nm |
k-factor of the free fibre | 0.795 [11] |
(wt.%) Type | Si | Cu | Fe | Mn | Mg | Ti |
---|---|---|---|---|---|---|
AlSi9Cu3(Fe) standardized [12] | 8.0–11.0 | 2.0–4.0 | 1.3 | 0.55 | 0.05–0.55 | <0.20 |
AlSi9Cu3(Fe) as-cast and grain refined | 9.1 | 3.1 | 0.74 | 0.28 | 0.21 | 0.010 |
Step 1 | Step 2 | Step 3 | Step 4 | Step 5 | Step 6 | Step 7 | Step 8 | Step 9 | |
---|---|---|---|---|---|---|---|---|---|
tension/MPa | 5 | 7.5 | 10 | 20 | 40 | 60 | 80 | 120 | 160 |
time (big volume)/s | 480 | 480 | 480 | 480 | 480 | 480 | 480 | 480 | 480 |
time (small volume)/s | 900 | 900 | 900 | 900 | 900 | 900 | 900 | 900 | 900 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heilmeier, F.; Koos, R.; Singer, M.; Bauer, C.; Hornberger, P.; Hiller, J.; Volk, W. Evaluation of Strain Transition Properties between Cast-In Fibre Bragg Gratings and Cast Aluminium during Uniaxial Straining. Sensors 2020, 20, 6276. https://doi.org/10.3390/s20216276
Heilmeier F, Koos R, Singer M, Bauer C, Hornberger P, Hiller J, Volk W. Evaluation of Strain Transition Properties between Cast-In Fibre Bragg Gratings and Cast Aluminium during Uniaxial Straining. Sensors. 2020; 20(21):6276. https://doi.org/10.3390/s20216276
Chicago/Turabian StyleHeilmeier, Florian, Robert Koos, Michael Singer, Constantin Bauer, Peter Hornberger, Jochen Hiller, and Wolfram Volk. 2020. "Evaluation of Strain Transition Properties between Cast-In Fibre Bragg Gratings and Cast Aluminium during Uniaxial Straining" Sensors 20, no. 21: 6276. https://doi.org/10.3390/s20216276
APA StyleHeilmeier, F., Koos, R., Singer, M., Bauer, C., Hornberger, P., Hiller, J., & Volk, W. (2020). Evaluation of Strain Transition Properties between Cast-In Fibre Bragg Gratings and Cast Aluminium during Uniaxial Straining. Sensors, 20(21), 6276. https://doi.org/10.3390/s20216276