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Abstract: Current testing methods are capable of measuring strain near the surface on structural parts,
for example by using strain gauges. However, stress peaks often occur within the material and can
only be approximated. An alternative strain measurement incorporates fibre-optical strain sensors
(Fiber Bragg Gratings, FBG) which are able to determine strains within the material. The principle has
already been verified by using embedded FBGs in tensile specimens. The transition area between fibre
and aluminium, however, is not yet properly investigated. Therefore, strains in tensile specimens
containing FBGs were measured by neutron diffraction in gauge volumes of two different sizes
around the Bragg grating. As a result, it is possible to identify and decouple elastic and plastic
strains affecting the FBGs and to transfer the findings into a fully descriptive FE-model of the strain
transition area.We thus accomplished closing the gap between the external load and internal straining
obtained from cast-in FBG and generating valuable information about the mechanisms within the
strain transition area.It was found that the porosity within the casting has a significant impact on the
stiffness of the tensile specimen, the generation of excess microscopic tensions and thus the formation
of permanent plastic strains, which are well recognized by the FBG. The knowledge that FBG as
internal strain sensors function just as well as common external strain sensors will now allow for the
application of FBG in actual structural parts and measurements under real load conditions. In the
future, applications for long-term monitoring of cast parts will also be enabled and are currently
under development.

Keywords: Fibre Bragg Gratings; neutron diffraction; X-ray tomography; tensile test

1. Introduction

A precise understanding of material behaviour is essential for the load-specific design of structural
components. Although there is much effort involved in designing structural parts, exact data for local
strains and stresses under load are often unavailable. Consequently, the compounds are oversized
by design, in order to ensure that they do not fail under normal load conditions [1]. The use of
advanced internal measurement methods now provides a means to obtain valid strain information
in structural parts under operating conditions and is therefore a promising approach to address this
problem. Fibre-optical strain sensors (Fibre Bragg Gratings, FBGs) are strain sensors which can be cast
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into aluminium parts, as already shown by Weraneck et al. [2]. At the current state of development,
structural parts are commonly monitored by the use of FBGs. In addition to using FBG as a substitute
for strain gauges, the trend in research and development is to use component-integrated sensors based
on FBG. There are several interesting applications of this method. Due to the low diameter of the glass
fibre FBGs are being put into fibre reinforced plastics [3]. One application of embedded FBGs is the
possibility to record strains during the curing of epoxy resin matrix. The associated knowledge of
process-related residual stresses has particular advantages in manufacturing fibre-reinforced laminated
metals [4]. FBG sensors integrated into fibre reinforced plastics are often used to examine impairments
and delaminations by Low-Velocity-Impacts [5]. This principle is also applicable to steel cables with
cores consisting of fibre reinforced plastics used for bridge constructions. This has the advantage
of long-term strain measurements due to the inserted FBG [6]. Thus, FBG sensors can also be used
in the construction industry. A further application proposes the use of FBG as a humidity sensor in
composites of wooden bridges. Since wood swells under humidity, FBG strain measurements allow
for conclusions about the humidity value and an assessment of the damages in the outer structure of
the bridge [7]. FBGs are also applied to monitor the progression of corrosion of construction steels [8].
This is possible due to the resistance of glass fibres against corrosive. This quality is also beneficial for
applications in the oil industry, where Zhou et al. describes FBGs as being used as pressure sensors
within boreholes [9]. To summarize, FBGs have a lot of advantages and thus can be applied to a vast
variety of measurement applications.

In this work, we utilized the small diameter and the resistance of glass fibres against the corrosive
effect of aluminium melts to cast FBGs into aluminium parts, see Figure 1a. By doing this, they function
as internal strain sensors (Figure 1b). This measurement principle has been applied to cast tensile
specimens made from the hypoeutectic cast alloy AlSi9Cu3 at utg. First calibration efforts, conducted
by comparing strain measurements on the inside as well as on the outside of tensile specimens [10],
showed that the calibration factor of the FBG differs from the factor obtained from the free fibres
as determined by Jülich et al. [11].

Figure 1. (a) One half of the instrumented mould with highlighted FBG. (b) Unfinished casting with
cast system and two specimens each. After machining, the standard tensile specimen according to [12]
contains a fully functional FBG. According to [13].

In the effort to calibrate cast-in FBGs during casting [13] and uniaxial straining [10], Heilmeier et al.
shows a wide dispersion of calibration factors. Obviously, cast-in FBGs behave differently compared
to free FBGs, which can be precisely calibrated. In general, embedded FBGs can be loaded with
axial and transversal strains according to [14]. Thus, for a better understanding of the strain transfer
mechanisms from aluminium to fibre, the transition area between FBG and surrounding aluminium
needs to be investigated in axial and transversal direction. To achieve this, the local microstrains within
the contributing phases need to be obtained by neutron diffraction on two different volume scales to
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identify their influence on the strain measurement by FBGs. As a result, we will be able to identify and
decouple elastic and plastic strains affecting the FBGs. This will allow the application of internal strain
sensors in actual structural parts and subsequently, measurements under real load conditions.

2. Materials and Methods

2.1. Fibre Bragg Gratings

The following section describes the measurement method that was used. An FBG is a periodic
change in the refraction index within the core of a glass fibre. Thus, a strain sensitive area is given along
the fibre’s axis, which is measured by an optical interrogator. For the internal strain measurements
during tensile testing we used a 3 mm long femtosecond grating within an SMF28 glass fibre, which can
be cast into aluminium alloys [2]. According to the findings of Heilmeier et al., the fibre has a
force-locked connection to the surrounding casting [10]. Figure 2a shows a sketch of a single mode
fibre with a core diameter of 8 µm. The coating is removed before any further processing leading
to an effective fibre diameter of 125 µm. The grating within the fibre’s core is depicted in Figure 2b.
This figure shows that the grating is affected by both the axial strain εz and the transversal strains εx

and εy.

Figure 2. (a) Structure of a single-mode SMF28 glass fibre. The resulting diameter after decoating
is 125 µm. (b) Inner structure of a Bragg grating within the fibre’s core. The embedded fibre can be
impinged by longitudinal (εz) and transversal strains (εx, εy).

The absolute Bragg wavelength λB of the reflected spectrum is given by

λB = 2ne f f Λ (1)

and depends on the grating period Λ as well as the effective refractive index ne f f [15]. Changes in Λ,
by external straining, lead to a shift ∆λB of the peak wavelength according to [16]:

∆λB = λB,0(1 − pe)εz (2)

Here, λB,0 is the initial peak wavelength of the free fibre without external straining and pe is the
effective photoelastic constant. For embedded FBGs, the strain εz can cause transversal strains by the
transversal contraction of the surrounding material. In this case, Equation (2) expands to

∆λB,x

λB,0
= εz −

n2
0

2
[p11εx + p12(εy + εz)] (3)

∆λB,y

λB,0
= εz −

n2
0

2
[p11εy + p12(εx + εz)] (4)
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for the x- and y-direction [17]. Here, local photoelastic constants p11 and p12 depend on the direction
which is currently referred to. Due to birefringence, there may be more than one distinct peak within
the FBG’s spectrum. This is why we use a peakfinding algorithm which tracks the primary peak
according to Heilmeier et al. The primary peak originates from the initial peak of the FBG and
represents the axial strain εz during tensile testing [10].

We chose femtosecond FBGs because of their thermal stability. In our recent work, we found that
the gratings withstand cast temperatures up to 750 ◦C without an excess degradation of their spectra.
The resulting reflectivity of at least 50% of the initial intensity grants robust measurements during and
after casting [14]. Table 1 shows the main FBG properties, including the conversion factor k = 0.795 of
the free fibre, which we used for the evaluation of εz according to Equation (5) [18]:

∆λ

λB
= k · εz (5)

We found that this approach is valid, if only the primary peak is evaluated.

Table 1. Fibre properties.

Fibre Type Single Mode SMF28

fibre diameter 125 µm
grating type femtosecond FBG
grating length 3 mm
initial wavelength λB,0 1550 nm
k-factor of the free fibre 0.795 [11]

2.2. Cast Materials

The standardized hypoeutectic cast alloy AlSi9Cu3(Fe) [12] was used to cast the specimens for
this investigation. It is commonly used for the production of structural parts using sand moulds, die
casting and high pressure die casting. For grain refinement we used an aluminium-titanium boride
(Al-TiB2) master alloy [19] to ensure better grain statistics during neutron diffraction [20]. The actual
composition of the cast material is shown in Table 2. The characterization using the specimens after
testing was conducted by spark emission spectroscopy.

Table 2. Standardized composition of AlSi9Cu3(Fe) and measured composition of grain refined
AlSi9Cu3(Fe) obtained by spark emission spectroscopy.

(wt.%) Type Si Cu Fe Mn Mg Ti

AlSi9Cu3(Fe) standardized [12] 8.0–11.0 2.0–4.0 1.3 0.55 0.05–0.55 <0.20
AlSi9Cu3(Fe) as-cast and grain refined 9.1 3.1 0.74 0.28 0.21 0.010

For casting we used 3D-printed furan resin-bound silica sand moulds, from which one half is
shown in Figure 3a. The melt is poured into the inlet at a cast temperature of 700 ◦C and is split by
a runner after passing through the filter. This way, two specimens, each containing an FBG, can be
cast. During machining, the feeder remains on the specimen. This way, the fibre is not harmed during
machining and the specimen contains a fully functional FBG for tensile testing—see Figure 3b.

The effect of grain refinement is shown in Figure 4. The dark field microscopy shows the texture
of the etched micrographs with distinct areas of different colours. Each area represents one grain of
the cast alloy, which is measured in directions of the large and small half axis. The mean values of
(a) 3260 µm versus 2040 µm and (b) 2200 µm versus 1180 µm, respectively, show a significant reduction
in the grain sizes, which leads to a stiffer material. This effect is described in Section 3.2.
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Figure 3. (a) One half of the cast mould. The melt is poured into the inlet (1), passes the filter (2) and is
split by the runner (3). This way, two specimens (4) with feeders (5) on top can be cast simultaneously.
The fibre (6) is protected by steel capillaries (7), which are supported by a frame (8). (b) Tensile specimen
(9) after machining, containing a fully functional internal FBG.

Figure 4. Images obtained from the dark field microscopy of etched aluminium micrographs. The effect
of grain refinement of titanium boride in (b) leads to a finer microstructure compared to non-grain
refined aluminium in (a) and thus to a higher stiffness of the tensile specimens.

2.3. Neutron Diffraction

Neutron diffraction is a common method for destruction-free measurement of the internal
straining of crystalline materials. At the research neutron source FRM2 (TUM) in Garching [21],
the neutron flux is generated by nuclear fission of 235U in a water-moderated chain reaction which
emits white neutron radiation [22]. After being reflected by a Si400 monochromator at a wavelength of
1.67 Å, the monochromatic neutron beam passes through the primary slit and penetrates the specimen,
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where it is diffracted by the hkl-lattice planes. After passing through a secondary slit, followed by a
radial collimator, the diffracted beam is detected—see Figure 5. The gauge volume inside the specimen
is defined by the height and width of the primary beam in combination with the width of the secondary
slit [23].

Figure 5. Fundamental setup of the neutron diffractometer STRESS-SPEC [23].

Neutron diffraction as a measurement technique is based on the scattering of neutrons by the
lattice planes of crystallines materials. The resulting path difference causes an interference, which was
first defined by W. H. Bragg as a fundamental equation [24] as follows:

2dhkl sinθhkl = λ (6)

The measurement principle is illustrated in Figure 6. The gauge volume exactly matches the
middle of the tensile specimen, where the internal FBG is situated. The diffraction angle 2θhkl is
extracted from the detector images. The change in 2θhkl results from the change in dhkl during external
straining and serves as basis for the calculation of the lattice spacing by using Equation (7) [25].

εhkl =
dσ,hkl − d0,hkl

d0,hkl
=

sinΘ0,hkl

sinΘσ,hkl
− 1. (7)

Figure 6. Principle of neutron diffraction, illustrated by the gauge volume within a tensile specimen.
The incident neutron beam is diffracted by the hkl-lattice planes of the α-crystallites, according to
Equation (6).
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2.4. X-ray Computed Tomography

X-ray computed tomography (CT) is an imaging technique, which is increasingly used as a
powerful, non destructive tool for visualizing 3D micro-structures. It enjoys enormous popularity in
research and development, especially for material science applications due to its ability to achieve
volumetric image resolutions at micrometer scale [26].

The cone-beam CT represents a state of the art scanning principle [27] which is depicted in
Figure 7. Multiple 2D X-ray projection images are taken from different angles, enabled by a rotation
of the scanned object within the X-ray cone beam. The flat photon detector is used to digitize the
projections in form of grey value coded images for further processing.

The principle is based on the partial attenuation of the X-ray beam by matter, following
an exponential law. Longer penetration depths lead to darker areas on the projected image.
The absorption also increases with both higher density and atomic number, while it decreases with
higher photon energies.

With the total amount of images taken, the inner structure of the sample can be determined by
mathematical 3D reconstruction methods [28]. For this reason, we used the cone-beam algorithm by
Feldkamp, Davis and Kress [29].

Figure 7. Schematic representation of the cone-beam CT imaging technique which gives evidence of
the inner structure of the specimen, such as porosity. According to [29].

2.5. Mathematical Operations

All measured strains depicted in Section 4 are fitted by using the empirical, mathematical
description of flow curves by Ludwik-Hollomon, according to [30]:

σφ = k · φn + σ0 (8)

where σφ is the yield stress and φ the degree of deformation. σ0 considers a possible prestress on
the specimen. This basic exponentional term is used to smooth the measured data points for a
direct comparability of the experimental variants. The root mean squared error obtained by fitting
Equation (8) to the measured data is propagated as an additional error value in combination with the
errors of the measured data. An estimation of the resulting errors is given by the square root of the
summed squared individual errors sε,i, according to Gauss [31]

sε,res =

√
n

∑
i=1

s2
ε,i (9)

3. Experimental Setup and Simulation Model

In order to evaluate the strain transition between cast-in FBGs and surrounding aluminium,
we simultaneously measured the internal straining obtained from FBG and neutron diffraction as well
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as the external strain with an extensometer during unixaial tensile testing. The measurements are
accompanied by a simulation, which models the cast-in FBG under external loads. The employed
methods are described below.

3.1. Experimental Setup

The experimental setup for internal strain measurements using FBGs has been established onsite
the STRESS-SPEC instrument [32] at the research neutron source FRM2 (TUM) in Garching [21] as
shown in Figure 8. The setup incorporates a mounting system, which allows the feeder to remain on
the tensile specimen. This is of particular importance because the FBG requires a functional connection
to the measurement equipment.

Figure 8. Experimental setup on site for the STRESS-SPEC instrument for simultaneous strain
measurements using FBG and neutron diffraction. The primary and secondary slits are adjusted
automatically to enable two different gauge volumes during testing. There is an additional extensometer
which is situated directly on the specimen.

The strain of the specimens was measured in situ and ex situ by extensometer, FBGs and neutron
diffraction simultaneously using the tensile rig at STRESS-SPEC [33]. The neutron beam covered
two differently sized gauge volumes (0.5 × 8 × 8 mm3 and 0.5 × 0.5 × 8 mm3) formed by a 0.5 mm
collimator and an automatically adjustable primary slit. A wavelength of λ = 1.67 Å was used for
acquiring the diffraction peaks of Al(311) at 2θ = 86◦ and a scan time of 300 s. The specimens rotated
around the vertical axis to improve grain statistics. The primary and secondary slit are directed to the
middle of the specimen and form a gauge volume which is congruent to the FBG and its measurement
direction along the axis of the specimen. Figure 6 shows the measurement principle on a microscopic
scale. The incident neutron beam is diffracted by the lattices planes of the α-crystallites within the
casting, which meet the Bragg relation in Equation (6) at an angle of 2θ ∼ 86◦.

During the experiment, the specimens were loaded with increasing load steps (in situ),
subsequently followed by a release of the force (ex situ). The load steps are shown in Table 3. For a
sufficient neutron count rate by the detector, each step with big volume lasts 480 s, whereas the small
volumes have a scan time of 900 s.
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Table 3. Increasing load steps during the tensile test. These represent the in situ load steps whereas the
ex situ load steps are given by each subsequent force relief with identical measuring durations.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9

tension/MPa 5 7.5 10 20 40 60 80 120 160
time (big volume)/s 480 480 480 480 480 480 480 480 480

time (small volume)/s 900 900 900 900 900 900 900 900 900

3.2. Simulation

For a distinct evaluation of the strain transition from aluminium to fibre, we used the implicit
finite element (FE) simulation given in Figure 9, as already presented in [13]. In order to model
the interaction properly, the simulation starts with the cooling of the aluminium body, which forces
compression strains onto the fibre—see Figure 10. The resulting force-locked connection is used as a
start condition for the subsequent simulation of the tensile test with increasing load steps, as listed in
Table 3. We extended the model by defining a step-wise increasing load σ onto the upper surface of
the aluminium body as depicted in Figure 9a.

Figure 9. (a) Sketch of the simulation model consisting of fibre with surrounding aluminium. Due to
symmetry, the model represents one eighth of the whole body. The two boundary conditions ∆T and σ

represent two consecutive steps of the straining depicted in Figure 10. (b) Mesh of the model with a
porosity of 1.0 vol.-%. (c) Detailed view on the void distribution within the model.

Figure 10. Definition of the simulation steps with explicit differentiation between the pre-load
and tensile test. The pre-load according to [13] leads to a realistic force-locked connection between
aluminium and fibre as a start condition for the subsequent tensile test at room temperature.
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For an additional evaluation on how the occurring porosity within the specimen affects the strain
transition, the aluminium body contains voids, which are simulated by a random deletion of nodes in
the FE-mesh, as already described by Heilmeier et al. [13]. The mesh with deleted nodes is shown in
Figure 9b, while Figure 9c shows a detailed view of the voids on the model’s surface.

The material model we used is based on a series of hot tensile tests, which were conducted
by Reihle [34]. The resulting temperature-resolved Mises-yield surface represents the macroscopic
material behaviour. The cast material tested by Reihle was not grain refined like the one in this survey,
which is why we calibrated the simulation using the in situ strain response measured by FBG. The yield
strength at room temperature has been extended to 104% of its original stiffness to match load step 9
in Figure 14b.

3.3. Porosity Evaluation by Computed Tomography

In order to perform a porosity analysis, high-resolution 3D-image data were obtained from the
tensile specimen using industrial computed tomography. The corresponding scanner is equipped with
a micro-focus X-ray source, which illuminates a 2k-detector with a pixel pitch of 200 µm. The scanning
region in the middle of the sample comprises the complete diameter by a scan height of 10 mm.
Due to this small region, a high magnification (compare with Figure 11) and thus a high volume
resolution of 8 µm is achieved at a scanning time of 90 min and a maximum X-ray energy of 170 keV.
In order to avoid artefacts arising from the polychromatic characteristic of the spectrum, the spectrum
is pre-filtered by a copper plate of 1 mm thickness [35].

Figure 11. The micro-focus CT-scanner Tomoscope HV 500 from Werth Messtechnik GmbH with the
tensile specimen, positioned directly in front of the X-ray source for high image magnification.

Since materials can be distinguished in the volume, a porosity evaluation is possible, as long as
they have different absorption coefficients. For evaluation, the VGDefX algorithm was used, which is
part of the porosity/inclusion analysis module of VG Studio Max [36]. This algorithm offers a reliable
pore detection and indicates the probability of occurrence for a statistic evaluation. It was used because
it takes grey value variations into account and applies noise reduction. In the analysis, an automatic
surface determination with local thresholding is used.

4. Results

In this investigation, we conducted tensile tests with three independent strain measurement
techniques. One of them is the new approach of optical strain measurements with cast-in FBGs.
The CT-scan gives evidence of the porosity within the specimens with an overall evaluation using
3D-image-reconstruction methods. We will present specimens FS54 and FS55 as well as ZS25 and
ZS26, which show less and more porosity, respectively. Both variants are fitted by Equation (8) for a
generalization of the strain progressions. All tests are accompanied by an FE-simulation, which is used
for the final evaluation of the strain transition from aluminium to fibre.
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4.1. Porosity Evaluation

Figure 12 shows the micro CT-scan of specimens FS54 and FS55 with porosity values of 0.15% and
0.06%, which are rather small for AlSi9Cu3(Fe) cast into sand moulds. The majority of the occurring
voids is formed by microscopic blowholes with occasional bubbles of entrained gas held onto the glass
fibres, as can be seen marked by the red arrows. In contrast, ZS25 and ZS26 show higher porosity
values of 0.63% and 0.73%, which are formed by the very prominent micro blowholes and the more
frequent occurrence of entrained gas bubbles on the glass fibres. The air bubbles are marked by red
arrows in Figure 13. These specimens were cast on a different day, leading to different cast conditions,
such as ambient temperature and humidity.

Figure 12. CT scans of specimens FS54 and FS55. The microstructure shows only a small amount of
micro blowholes and only occasional entrained gas bubbles (marked by arrows). This leads to an
overall porosity values of 0.15 vol.-% and 0.06 vol.-%.

Figure 13. CT scans of specimens ZS25 and ZS26. These specimens were cast on another day leading
to a much higher amount of micro blowholes as well as more entrained gas bubbles on the fibres
marked by arrows. The resulting overall porosity values of 0.63 vol.-% and 0.73 vol.-% lead to a
weaker microstructure.
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4.2. Strain Evaluation during Tensile Testing

The tensile tests enable the comparison of three independent strain measurement techniques.
The extensometer data represent the macroscopic behaviour of the specimens under external load.
The cast-in FBGs provide strain information from within the specimens. The phase-specific straining is
given by neutron diffraction with two different gauge volumes around the fibre. Each strain evolution
consists of two data sets measured by specimens obtained from one casting, which were unified using
a fitting curve given by Equation (8).

The tensile test routine presented in Table 3 leads to strain reactions, which are shown in Figure 14
for FS54 and FS55. Figure 14a depicts the phase-specific strains within the Al311-crystallites. AlSi
alloys commonly show heterogeneous microstructures, which combines stiff Si particles with ductile
α-aluminium into a composite with a combined strength, see Schöbel et al. [37]. Due to the ductility of
the α-aluminium, which is measured specifically by neutron diffraction in form of the Al311-reflection,
the measured strains in Figure 14a are smaller than the macroscopic strains depicted in Figure 14b.
The big and small gauge volumes both show similar in situ strain reactions, whereby the small volume
generates slightly smaller values. The similar strains can be explained by the small amount of porosity
as depicted by Figure 12, leading to an even strain distribution over the gauge volumes. The simulated
strain data show very good agreement with the measured data, where only the last two load steps
are overvalued by up to 340 × 10−6 m/m. The ex situ data of Al311 show compressive strains, which
is a microscopic reaction to the presence of silicon-rich precipitations within the alloy. Due to the
homogeneous material model within the simulation, this effect cannot be accurately recreated and
thus the elastic strains take on a value of zero when the force is relieved.

Figure 14. Straining of specimens FS54 and FS55 under tensile load steps until fatigue. The figure
shows both the comparison of in situ and ex situ data obtained by (a) neutron diffraction and (b) by
extensometer and FBG. The simulation does not consider the microstructure of the aluminium and
thus the microscopic straining does not show any permanent strains. Besides that, the calculated data
in (b) match the measured strains well. The measured strain reactions have been fitted by Equation (8).
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The straining obtained from FBG and extensometer is depicted in Figure 14b. The data show
good agreement between FBG and extensometer, meaning that cast-in FBG are perfectly capable of
measuring precise strain data conforming to standards [38]. The maximum in situ straining shows
values as high as 7000 × 10−6 m/m. This data point is used to calibrate the simulation model,
from which all other calculated strain values arise.

The ex-situ straining shows the plastification of the specimens, beginning at tensions higher than
40 MPa. Both extensometer and FBG recognize plastic strains in the form of a permanent deformation,
which remains after strain relief as ex situ straining. Here, again, the calculated strain data perfectly
match the measured data. Due to the small amount of porosity within specimens FS54 and FS55,
the strain calculations were obtained from the simulation model without porosity.

Concerning specimens ZS25 and ZS26, the best fitting results were calculated by adding 1.0%
porosity to the model as described in Section 3.2. The resulting quality was evaluated with respect to
the highest in situ strain value in Figure 15b. Again, the model does not take the microstructure of the
alloy into account. Thus, the phase-specific straining of Al311 is overrated for the in situ steps and takes
on zero-values for the ex situ steps. The in situ and ex situ straining of the fibre and the extensometer,
which again show very good agreement to each other, are perfectly matched by the simulation.

Figure 15. Straining of specimens ZS25 and ZS26 under tensile load steps until fatigue. The figure
shows both the comparison of in situ and ex situ data obtained by (a) neutron diffraction and (b) by
extensometer and FBG. The calculated data include 1.0 vol.-% porosity and match the measured strains
well. The measured strain reactions have been fitted by Equation (8).

In conclusion, the results of the simulation model presented in Section 3.2 could be verified
by all the different strain measurement techniques we used during tensile testing. Especially the
phase-specific strain data obtained by neutron diffraction provides valuable support, leading to a fully
descriptive model of the interaction between glass fibre and cast aluminium. Based on these findings,
we are now able to examine the strain transition from aluminium to fibre as a function of the radius on
a microscopic scale.
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4.3. Evaluation of the Strain Transition Area

The simulation model now allows for a closer look at the strain transition area as a function of
the model’s radius. Therefore, Figure 16 shows the strain distribution for load step 9 at 160 MPa,
according to Table 3. The radius is given by normalized values beginning from zero in the middle,
where the fibre is indicated, to the fringe of the aluminium.

In Figure 16 the non-porous material to the left is compared to the material with 1.0 vol.-%
porosity to the right. The in situ elastic straining shows 2000 × 10−6 m/m for both models, which is in
compliance to the results in Figures 14a and 15a. In addition, the plastic straining is given, which is
generated during the in situ steps and remains as permanent straining when the force is relieved.

Figure 16. Strain transition area as obtained from the calibrated simulation model. The straining versus
normalized radius shows the in situ elastic and plastic strains as well as the ex situ strains for (a) the
non-porous model and (b) the model with 1.0 vol.-% porosity.

After relief, the elastic ex situ strains return to zero except for the immediate surrounding of the
fibre. Note that the data points deposited in grey colour are the direct calculations of the porous model.
As the model is speckled with voids, the results are not radially symmetrical any more, which is why
we calculated the mean values versus radius.

Naturally, the voids within the aluminium are not able to transfer stresses, which weakens the
whole material by the generation of local excessive tensions. This leads to increased overall plastic
strains beginning at tensions higher than 40 MPa. The plastic strains sum up over the entirety of all
in situ load steps leading to higher measured values in Figure 15b than in Figure 14b. This does not
affect the elastic share of the overall straining, which solely depends on the yield stress given by the
material model. This is why the elastic strain progressions for both models share a common mean
value in Figure 16.

Due to the voids, local excessive tensions are forming within the aluminium. The related plastic
strains are depicted in Figure 17b in direct comparison to the plastic strains in the absence of the voids
(Figure 17a). The voids are statistically allocated, which is why the effect of excessive tensions averages
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itself. The glass fibre is only affected by changing transversal tensions, which can cause a change in
the FBG’s spectrum [17]. According to Heilmeier et al. [10], this has no influence on the FBG’s axial
straining as long as only the primary peak is evaluated.

Figure 17. Microscopic plastic straining in the transition area around the glass fibre (a) without and (b)
with 1.0 vol.-% porosity. By adding voids to the model, local excessive tensions are formed, weakening
the structure of the specimen.

4.4. Spectra Analysis

Figure 18 elucidates the alteration of the FBG’s spectrum. The position of the primary peak
determined by the peakfinding algorithm is given by the black arrows. We chose specimen FS55 due
to the small defect content (see Figure 12) in order to keep the influence of porosities on the spectrum
at a minimum. All spectra are normalized using the initial peak, which is the given by the free fibre
before casting. The peak intensity after casting is beneath 40% of its original intensity. The spectrum
of the FBG after machining shows a relief of the force on the fibre, leading to a moderate rise in
the peak intensity and a shift back to higher wavelengths. This is the initial state of the FBG before
tensile testing.

In order to show the effect of the external force during tensile testing, the figure shows the
spectrum which forms during the last load step and after relief. During in situ step 9, the spectrum
shows distinct secondary peaks, which may be caused by transversal loads, strain gradients along the
Bragg grating [17] or changes in the fibre’s local photoelastic constants—see Equations (3) and (4).

The peakfinding algorithm is designed to track the primary peak, which represents the axial
straining εz of the grating. This was already proven by Heilmeier et al. [10] and can be directly seen
by the agreement of the strain measurements in Figures 14b and 15b. The cause of the occurring
secondary peaks, however, has to be determined by further experiments. After relief, the spectrum
obviously reshapes to a less distorted peak. This may be a proof for the secondary peaks to be caused
by transversal strains, as the lateral contraction of the tensile specimen reduces after relief.
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Figure 18. FBG-spectra obtained from every intermediate condition of the specimen before and
during testing. The spectrum shows a decrease in reflectivity and degenerates with an increased load
subsequently, where secondary peaks are formed beside the primary peak (marked by a black arrow
for each step).

5. Discussion

The calculations show that increased plastic strains are generated by the voids within the
aluminium due to local excessive tensions. This greatly affects the macroscopic behaviour of the
specimens and thus the strain measurements by extensiometer and FBG—see Figures 14b and 15b.
Apparently, the microscopic strain distribution only affects the aluminium, as the glass fibre only
shows changes in macroscopic strains. Obviously, the casting’s supporting effect is still granted in the
presence of pores, as the glass fibre would otherwise have breached.

Above a tension of 40 MPa, plastic strains are generated, which build up during the in situ
steps. The total plastic strain is then retained as total strain information within the glass fibre.
Obviously, the strain transition between aluminium and fibre is not affected by the porosity. There
is rather the effect of increased plastification of the specimens which, of course, cannot be directly
detected during continuous tensile testing. Regarding [10], only in situ data were generated during
testing, making it impossible to decouple plastic and elastic strains afterwards.

The wide range of porosity values between 0 vol.-% and 2 vol.-% can now explain the variation of
calibration factors. This claim is sustained by [13], which states that the overall defect volume has a
greater influence on the strain response of the cast-in FBG than the defect area directly on the fibre.

Nevertheless, the difference between strains measured by FBG and extensometer has not yet been
clarified. This may be due to stick-slip effects, which we could not verify in our simulation.

Although the statement of the simulation is valid and provides quantitative results,
the microscopic strain distribution highly depends on the shape and distribution of the voids
within the model. This may have a small impact on the local microscopic strains, but sums up
to a macroscopic difference in the overall straining and stiffness of the specimen. The validation
in Figures 14 and 15 shows excellent agreement between measurement and simulation and yields
valuable information about the strain transition area. Thus, the FE-model closes the gap between
microscopic and macroscopic straining. Of particular significance is the statement that cast-in FBG
behaves like the external strain measurement method given by extensometer. The microstructure of the
surrounding aluminium and the external load condition do affect the reflected spectra obtained from
the Bragg grating. However, the strain measurement by FBG is not compromised if the primary peak is
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reliably tracked during the spectra analysis. Other than Lammens et al., who investigated transversal
strains during the curation of cross-ply composites [39], we only focus on the distinct detection of
the primary peak in this work, which represents the axial straining εz. Nevertheless, if the occurring
secondary peaks can be reliably related to transversal strains, the peak-finding method we used could
be of certain interest for the evaluation of embedded FBGs.

6. Conclusions

In recent research, cast-in FBG showed a wide dispersion of calibration factors. In this research,
we examined the question on how the strain transition from aluminium to fibre forms during tensile
testing. Microscopic porosity has a great impact on the local microstrains generated. Both effects
were evaluated by a calibrated finite element simulation, which is based on both the measurement of
phase-specific strains using neutron diffraction and macrostrains by the extensometer, as well as FBG.
As a result, we were able to identify and decouple elastic and plastic strains affecting the FBGs.

The experiments show that plastic strains develop at tensions higher than 40 MPa. Plastic strains
remain permanently within the specimen and add up over all load steps. Because the fibre has a
force-locked connection to the surrounding casting due to shrinkage after solidification, the FBG shows
the same permanent straining in the plastic deformation regime of the specimen as the external strain
measurement by extensometer.

Because of local excessive tensions in presence of pores regions more plastic straining is transferred
into the FBG. This is shown by the FE simulation, which gives evidence of the local stress and strain
distribution in the transition area, especially in the direct surroundings of the glass fibre. The content
of porosity within the casting turns out to be the main influence on the straining of the fibre, which is
then measured by the Bragg grating.

The porosity affects neither the calculated nor the measured phase-specific elastic strains of the
aluminium crystallites. The mechanisms of plastification do not occur within the aluminium grains,
but in between. This is why neutron diffraction is only able to measure elastic strains, which turn out
to be independent from the pore content. This is substantiated by simulation, which is not able to show
the microscopic, inter-granular ex situ strains within the aluminium, though. An interesting extension
of the simulation model would hence consider a heterogeneous microstructure of the aluminium.

In conclusion, we accomplished to close the gap between the external load and internal straining
obtained from cast-in FBG by development of a fully descriptive FE-model considering the contact
between casting and glass fibre. This enables the generation of valuable information about the
mechanisms within the strain transition obtained from the strain evolutions directly around the fibre.
We see that the porosity has a significant impact on the stiffness of the tensile specimen, the generation
of excess tensions and thus the formation of permanent plastic strains, which are well recognized by
the FBG. The knowledge that FBG as internal strain sensors function just as common external strain
sensors will allow the application of FBG in actual structural parts and measurements under real load
conditions. In future, applications for long-term monitoring of cast parts will also be enabled and are
currently under development.
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