Volatile Gas Sensing through Terahertz Pipe Waveguide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optical Configuration
2.2. Wave-Guidance Principle of a Dielectric Pipe
2.3. Gas-Sensing Mechanism
2.4. Gas-Sensing Parameters
2.5. Preparation of Gas Samples
3. Results and Discussion
3.1. Reflectivity Spectrum of Round-Trip Propagation
3.2. Frequency-Dependent Sensing Abilities
3.3. Sensing Ability for Vapors of Various Volatile Liquids
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Radogna, A.V.; Siciliano, P.A.; Sabina, S.; Sabato, E.; Capone, S. A low-cost breath analyzer module in domiciliary non-invasive mechanical ventilation for remote COPD patient monitoring. Sensors 2020, 20, 653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, H.; Duan, Z.; He, Z.; Li, X.; Xu, J.; Liu, B.; Jiang, Y. Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sens. Actuator B-Chem. 2019, 298, 126874. [Google Scholar] [CrossRef]
- Duan, Z.; Zhang, Y.; Tong, Y.; Zou, H.; Peng, J.; Zheng, X. Mixed-potential-type gas sensors based on Pt/YSZ film/LaFeO3 for detecting NO2. J. Electron. Mater. 2017, 46, 6895–6900. [Google Scholar] [CrossRef]
- Tai, H.; Duan, Z.; Wang, Y.; Wang, S.; Jiang, Y. Paper-based sensors for gas, humidity, and strain detections: A review. ACS Appl. Mater. Interfaces 2020, 12, 31037–31053. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Zhao, R.; Yao, L.; Ran, Y.; Zhang, X.; Wang, Y. A review on WO3 based gas sensors: Morphology control and enhanced sensing properties. J. Alloy Compd. 2020, 820, 153194. [Google Scholar] [CrossRef]
- Boroujerdi, R.; Abdelkader, A.; Paul, R. State of the art in alcohol sensing with 2D materials. Nano-Micro Lett. 2020, 12, 33. [Google Scholar] [CrossRef] [Green Version]
- Bavili, N.; Balkan, T.; Morova, B.; Eryürek, M.; Uysallı, Y.; Kaya, S.; Kiraz, A. Highly sensitive optical sensor for hydrogen gas based on a polymer microcylinder ring resonator. Sens. Actuator B-Chem. 2020, 310, 127806. [Google Scholar] [CrossRef]
- Yang, J.; Shen, R.; Yan, P.; Liu, Y.; Li, X.; Zhang, P.; Chen, W. Fluorescence sensor for volatile trace explosives based on a hollow core photonic crystal fiber. Sens. Actuator B-Chem. 2019, 306, 127585. [Google Scholar] [CrossRef]
- Martan, T.; Aubrecht, J.; Podrazký, O.; Matějec, V.; Kašík, I. Detection of hydrocarbons using suspended core microstructured optical fiber. Sens. Actuator B-Chem. 2014, 202, 123–128. [Google Scholar] [CrossRef]
- Plunkett, S.; Parrish, M.E.; Shafer, K.H.; Nelson, D.; Shorter, J.; Zahniser, M. Time-resolved analysis of cigarette combustion gases using a dual infrared tunable diode laser system. Vib. Spectrosc. 2001, 27, 53–63. [Google Scholar] [CrossRef]
- Wynne, R.M.; Barabadi, B.; Creedon, K.J.; Ortega, A. Sub-minute response time of a hollow-core photonic bandgap fiber gas sensor. J. Light. Technol. 2009, 27, 1590–1596. [Google Scholar] [CrossRef]
- Yang, F.; Jin, W.; Lin, Y.; Wang, C.; Lut, H.; Tan, Y. Hollow-core microstructured optical fiber gas sensors. J. Light. Technol. 2017, 35, 3413–3424. [Google Scholar] [CrossRef]
- Tüutüncü, E.; Kokoric, V.; Wilk, A.; Seichter, F.; Schmid, M.; Hunt, W.E.; Manuel, A.M.; Mirkarimi, P.; Alameda, J.B.; Carter, J.C.; et al. Fiber-coupled substrate-integrated hollow waveguides: An innovative approach to mid-infrared remote gas sensors. ACS Sens. 2017, 2, 1287–1293. [Google Scholar] [CrossRef]
- Ohkoshi, S.-I.; Yoshikiyo, M.; Namai, A.; Nakagawa, K.; Chiba, K.; Fujiwara, R.; Tokoro, H. Cesium ion detection by terahertz light. Sci. Rep. 2017, 7, 8088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryder, M.R.; de Voorde, B.V.; Civalleri, B.; Bennett, T.D.; Mukhopadhyay, S.; Cinque, G.; Fernandez-Alonso, F.; Vos, D.D.; Rudić, S.; Tan, J.-C. Detecting molecular rotational dynamics complementing the low-frequency terahertz vibrations in a zirconium-based metal-organic framework. Phys. Rev. Lett. 2017, 118, 255502. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.-H.; Hsueh, Y.-C.; Chen, H.-W.; Huang, Y.-J.; Chang, H.-C.; Sun, C.-K. Low-index terahertz pipe waveguides. Opt. Lett. 2009, 34, 3457–3459. [Google Scholar] [CrossRef]
- Kim, S.-S.; Menegazzo, N.; Young, C.; Chan, J.; Carter, C.; Mizaikoff, B. Mid-infrared trace gas analysis with single-pass Fourier transform infrared hollow waveguide gas sensors. Appl. Spectrosc. 2009, 63, 331–337. [Google Scholar] [CrossRef]
- Neumaier, P.F.-X.; Schmalz, K.; Borngraber, J.; Wyldecd, R.; Hubers, H.-W. Terahertz gas-phase spectroscopy: Chemometrics for security and medical applications. Analyst 2015, 140, 213–222. [Google Scholar] [CrossRef]
- Katagiri, T.; Suzuki, T.; Matsuura, Y. Time-domain terahertz gas spectroscopy using hollow-optical fiber gas cell. Opt. Eng. 2018, 57, 054104. [Google Scholar] [CrossRef]
- You, B.; Lu, J.-Y. Sensitivity analysis of multilayer microporous polymer structures for terahertz volatile gas sensing. Opt. Express 2017, 25, 5651–5661. [Google Scholar] [CrossRef] [PubMed]
- Tihay, V.; Gillarda, P.; Blanc, D. Ignition study of acetone/air mixtures by using laser-induced spark. J. Hazard. Mater. 2012, 209–210, 372–378. [Google Scholar] [CrossRef]
- Qin, J.; Zhu, B.; Du, Y.; Han, Z. Terahertz detection of toxic gas using a photonic crystal fiber. Opt. Fiber Technol. 2019, 52, 101990. [Google Scholar] [CrossRef]
- Shi, X.; Zhao, Z.; Han, Z. Highly sensitive and selective gas sensing using the defect mode of a compact terahertz photonic crystal cavity. Sens. Actuator B-Chem. 2018, 274, 188–1938. [Google Scholar] [CrossRef]
- Van der Weide, D.W.; Murakowski, J.; Keilmann, F. Gas-absorption spectroscopy with electronic terahertz techniques. IEEE Trans. Microw. Theory Tech. 2000, 48, 740–743. [Google Scholar] [CrossRef]
- Bigourd, D.; Cuisset, A.; Hindle, F.; Matton, S.; Fertein, E.; Bocquet, R.; Mouret, G. Detection and quantification of multiple molecular species in mainstream cigarette smoke by continuous-wave terahertz spectroscopy. Opt. Lett. 2006, 31, 2356–2358. [Google Scholar] [CrossRef] [PubMed]
- Saleh, B.E.A.; Teich, M.C. Fundamentals of Photonics, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001; pp. 157–192. [Google Scholar]
- Yang, Y.; Shutler, A.; Grischkowsky, D. Measurement of the transmission of the atmosphere from 0.2 to 2 THz. Opt. Express 2011, 19, 8830–8838. [Google Scholar] [CrossRef]
- Petrucci, R.H.; Herring, F.G.; Madura, J.D.; Bissonnette, C. General Chemistry Principles and Modern Applications; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Yaws, C.L. The Yaws Handbook of Vapor Pressure, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Nelson, R.D.; Lide, D.R.; Maryott, A.A. Selected values of electric dipole moments for molecules in the gas phase. U.S. Natl. Bur. Stand. NSRDS-NBS 1967, 10, 13–25. [Google Scholar]
Sample | Contents | Vapor Pressure (kpa) | Vapor Density (ρ) (mg/L, ppm) | Molecular Dipole Moment (p) (debye) | ||
---|---|---|---|---|---|---|
Volume Concentration | Molecule | Molecular Weight (g) | ||||
Methanol | 100% | CH3OH | 32.0 | 16.8 | 216.75 | 1.70 |
Hydrochloric acid | 38% | HCl | 36.5 | 28.3 | 414.95 | 1.08 |
Ammonia | 28% | NH4OH | 35.0 | 67.97 | 957.97 | 1.47 |
Acetone | 100% | CH3COCH3 | 58.0 | 32.53 | 761.54 | 2.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.-Y.; You, B.; Wang, J.-Y.; Jhuo, S.-S.; Hung, T.-Y.; Yu, C.-P. Volatile Gas Sensing through Terahertz Pipe Waveguide. Sensors 2020, 20, 6268. https://doi.org/10.3390/s20216268
Lu J-Y, You B, Wang J-Y, Jhuo S-S, Hung T-Y, Yu C-P. Volatile Gas Sensing through Terahertz Pipe Waveguide. Sensors. 2020; 20(21):6268. https://doi.org/10.3390/s20216268
Chicago/Turabian StyleLu, Ja-Yu, Borwen You, Jiun-You Wang, Sheng-Syong Jhuo, Tun-Yao Hung, and Chin-Ping Yu. 2020. "Volatile Gas Sensing through Terahertz Pipe Waveguide" Sensors 20, no. 21: 6268. https://doi.org/10.3390/s20216268
APA StyleLu, J.-Y., You, B., Wang, J.-Y., Jhuo, S.-S., Hung, T.-Y., & Yu, C.-P. (2020). Volatile Gas Sensing through Terahertz Pipe Waveguide. Sensors, 20(21), 6268. https://doi.org/10.3390/s20216268