Advances in Random Fiber Lasers and Their Sensing Application
Abstract
:1. Introduction
2. RFLs Based on Various Optical Fibers
2.1. PCF-Based RFLs
2.2. SMF-Based RFLs
2.3. AOF-Based RFLs
2.4. DCF-Based RFLs
2.5. PMF-Based RFLs
3. Control of Output Characteristics
3.1. Output Power
3.2. Wavelength
3.3. Line-Width
4. Sensing Application
4.1. Point-Sensing
4.2. Distributed-Sensing
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gould, R.G. The LASER, light amplification by stimulated emission of radiation. Ann Arbor 1959, 15, 92. [Google Scholar]
- Einstein, A. Zur quantentheorie der strahlung. Mitt. Phys. Ges. 1916, 18, 47–62. [Google Scholar]
- Einstein, A. Quantum theory of radiation. Phy. Z. 1917, 18, 121–128. [Google Scholar]
- Gordon, J.P.; Zeiger, H.J.; Townes, C.H. Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH3. Phys. Rev. 1954, 95, 282. [Google Scholar] [CrossRef] [Green Version]
- Basov, N.G.; Prokhorov, A.M. Possible methods of obtaining active molecules for a molecular oscillator. J. Exp. Theor. Phys. 1955, 28, 249–250. [Google Scholar]
- Basov, N.G.; Prokhorov, A.M. Theory of the molecular generator and molecular power amplifier. J. Exp. Theor. Phys. 1956, 30, 560–563. [Google Scholar]
- Maiman, T.H. Stimulated optical radiation in ruby. Nature 1960, 187, 493–494. [Google Scholar] [CrossRef]
- Sojka, L.; Pajewski, L.; Lamrini, S.; Farries, M.; Benson, T.M.; Seddon, A.B.; Sujecki, S. Experimental investigation of actively Q-switched Er3+: ZBLAN fiber laser operating at around 2.8 µm. Sensors 2020, 20, 4642. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Zhao, Y.G. Random laser action in semiconductor powder. Phys. Rev. Lett. 1999, 82, 2278–2281. [Google Scholar] [CrossRef] [Green Version]
- Hsu, H.C.; Wu, C.Y. Stimulated emission and laser of random-growth oriented ZnO nanowires. J. Appl. Phys. 2005, 97, 241. [Google Scholar] [CrossRef] [Green Version]
- Wiersma, D.S. The physics and applications of random lasers. Nat. Phys. 2008, 4, 359–367. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, J.L. Single longitudinal mode Brillouin fiber laser with cascaded ring Fabry–Perot resonator. IEEE Photonics Technol. Lett. 2014, 26, 169–172. [Google Scholar] [CrossRef]
- Letokhov, V.S. Stimulated emission of an ensemble of scattering particles with negative absorption. JETP Lett. 1967, 5, 212–215. [Google Scholar]
- Letokhov, V.S. Generation of light by a scattering medium with negative resonance absorption. Sov. Phys. JETP 1968, 26, 835–840. [Google Scholar]
- Lubatsch, A.; Frank, R. A self-consistent quantum field theory for random lasing. Appl. Sci. 2019, 9, 2477. [Google Scholar] [CrossRef] [Green Version]
- Hoinka, N.M.; Ostwald, C.; Fuhrmann-Lieker, T. Two-dimensional wrinkle resonators for random lasing in organic glasses. Sci. Rep. 2020, 10, 2434. [Google Scholar] [CrossRef] [Green Version]
- Lawandy, N.M.; Balachandran, R.M.; Gomes, A.S.L.; Sauvain, E. Laser action in strongly scattering media. Nature 1994, 368, 436–438. [Google Scholar] [CrossRef]
- Wiersma, D.S.; Van, A.M.P.; Lagendijk, A. Random laser? Nature 1995, 373, 203–204. [Google Scholar] [CrossRef]
- Lawandy, N.M.; Balachandran, R.M. Random laser? Nature 1995, 373, 204. [Google Scholar] [CrossRef]
- Markushev, V.M.; Zolin, V.F.; Briskina, C.M. Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders. Sov. J. Quantum Electron. 1986, 16, 281–283. [Google Scholar] [CrossRef]
- Frolov, S.V.; Vardeny, Z.V.; Yoshino, K.; Zakhidov, A.; Baughman, R.H. Stimulated emission in high-gain organic media. Phys. Rev. B 1999, 59, 5284–5287. [Google Scholar] [CrossRef]
- Wiersma, D.S. Light transport in opaque liquid crystal structures. Mol. Cryst. Liq. Cryst. 2002, 375, 15–31. [Google Scholar] [CrossRef]
- Brito-Silva, A.M.; Galembeck, A.; Gomes, A.S.L.; Jesus-Silva, A.J.; de Araújo, C.B. Random laser action in dye solutions containing Stöber silica nanoparticles. J. Appl. Phys. 2010, 108, 033508. [Google Scholar] [CrossRef]
- Ghofraniha, N. Transition from nonresonant to resonant random lasers by the geometrical confinement of disorder. Opt. Lett. 2013, 38, 5043–5046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turitsyn, S.K.; Babin, S.A.; Churkin, D.V.; Vatnik, I.D.; Nikulin, M.; Podivilov, E.V. Random distributed feedback fibre lasers. Phys. Rep. 2014, 542, 133–193. [Google Scholar] [CrossRef]
- Lubatsch, A.; Frank, R. Coherent transport and symmetry breaking—Laser dynamics of constrained granular matter. New J. Phys. 2014, 16, 083043. [Google Scholar] [CrossRef] [Green Version]
- Lubatsch, A.; Frank, R. Tuning the quantum efficiency of random lasers—Intrinsic Stokes-shift and gain. Sci. Rep. 2015, 5, 17000. [Google Scholar] [CrossRef] [Green Version]
- Kogelnik, H.; Shank, C.V. Stimulated emission in a periodic structure. Appl. Phys. Lett. 1971, 18, 152–154. [Google Scholar] [CrossRef]
- Leandro, D.; Rota-Rodrigo, S.; Ardanaz, D.; Lopez-Amo, M. Narrow-linewidth multi-wavelength random distributed feedback laser. J. Lightwave Technol. 2015, 33, 3591–3596. [Google Scholar] [CrossRef]
- De Matos, C.J.; Menezes, L.D.S.; Brito-Silva, A.M.; Gámez, M.M.; Gomes, A.S.; de Araújo, C.B. Random fiber laser. Phys. Rev. Lett. 2007, 99, 153903. [Google Scholar] [CrossRef]
- Turitsyn, S.K.; Babin, S.A. Random distributed feedback fibre laser. Nat. Photonics 2010, 4, 231–235. [Google Scholar] [CrossRef]
- Pinto, A.M.; Frazao, O. Multiwavelength Raman fiber lasers using Hi-Bi photonic crystal fiber loop mirrors combined with random cavities. J. Lightwave Technol. 2011, 29, 1482–1488. [Google Scholar] [CrossRef]
- Eltaher, A.E.; Harper, P. Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation. Opt. Lett. 2011, 36, 130–132. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.H.; Rao, Y.J. Random-laser-based distributed fiber-optic amplification. Opt. Express 2013, 21, 6572–6577. [Google Scholar] [CrossRef]
- Babin, S.A.; Dontsova, E.I. Random fiber laser directly pumped by a high-power laser diode. Opt. Lett. 2013, 38, 3301–3303. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ding, Y. Random distributed feedback fiber laser pumped by an ytterbium doped fiber laser. Optik 2014, 125, 3663–3665. [Google Scholar] [CrossRef]
- Jin, X.; Lou, Z. Random distributed feedback fiber laser at 2.1 μm. Opt. Lett. 2016, 41, 4923–4926. [Google Scholar] [CrossRef]
- Pan, W.; Zhang, L. Ultrafast Raman fiber laser with random distributed feedback. Laser Photonics Rev. 2018, 12, 1700326. [Google Scholar] [CrossRef]
- Churkin, D.V.; Sugavanam, S. Recent advances in fundamentals and applications of random fiber lasers. Adv. Opt. Photonics 2015, 7, 516–569. [Google Scholar] [CrossRef]
- Mazarei, F.; Honarasa, G. Random distributed feedback fiber lasers: Impact of third-order dispersion. J. Nonlinear Opt. Phys. Mater. 2019, 28, 1950035. [Google Scholar] [CrossRef]
- Churkin, D.V.; Kolokolov, I.V. Wave kinetics of random fibre lasers. Nat. Commun. 2015, 2, 6214. [Google Scholar] [PubMed] [Green Version]
- Gorbunov, O.A.; Sugavanam, S. Intensity dynamics and statistical properties of random distributed feedback fiber laser. Opt. Lett. 2015, 40, 1783–1786. [Google Scholar]
- Wang, Z.N.; Rao, Y.J. Long-distance fiber-optic point-sensing systems based on random fiber lasers. Opt. Express 2012, 20, 17695–17700. [Google Scholar] [PubMed]
- Leandro, D.; Demiguel-Soto, V. Random DFB fiber laser for remote (200 km) sensor monitoring using hybrid WDM/TDM. J. Lightwave Technol. 2016, 34, 4430–4436. [Google Scholar]
- Leandro, D.; Demiguel-Soto, V. High-resolution sensor system using a random distributed feedback fiber laser. J. Lightwave Technol. 2016, 34, 4596–4602. [Google Scholar]
- Peide, L.; Wenzhu, H. Ultrahigh resolution optic fiber strain sensor with a frequency-locked random distributed feedback fiber laser. Opt. Lett. 2018, 43, 2499. [Google Scholar]
- Vatnik, I.D.; Churkin, D.V. Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm. Opt. Express 2011, 19, 18486. [Google Scholar] [PubMed]
- Vatnik, I.D.; Churkin, D.V. High-efficiency generation in a short random fiber laser. Laser Phys. Lett. 2014, 11, 075101. [Google Scholar]
- Wang, Z.; Wu, H. High power random fiber laser with short cavity length: Theoretical and experimental investigations. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 10–15. [Google Scholar]
- Zhang, H.; Zhou, P. Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation. Opt. Express 2015, 23, 17138–17144. [Google Scholar]
- Zhang, H.; Du, X. Tapered fiber based high power random laser. Opt. Express 2016, 24, 9112–9118. [Google Scholar]
- Zhang, H.; Huang, L. More than 400 W random fiber laser with excellent beam quality. Opt. Lett. 2017, 42, 3347–3350. [Google Scholar]
- Ma, R.; Li, J. High-power low spatial coherence random fiber laser. Opt. Express 2019, 27, 8738–8744. [Google Scholar] [PubMed] [Green Version]
- Zhang, W.L.; Rao, Y.J. Low threshold 2nd-order random laser of a fiber laser with a half-opened cavity. Opt. Express 2012, 20, 14400–14405. [Google Scholar]
- Churkin, D.; Babin, S. Raman fiber lasers with a random distributed feedback based on Rayleigh scattering. Phys. Rev. A 2010, 82, 033828. [Google Scholar]
- Zhang, W.L.; Li, S.W. Random distributed feedback fiber laser based on combination of Er-doped fiber and single-mode fiber. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 1–6. [Google Scholar]
- Meng, Q.; Wu, H. LD-pumped random fiber laser based on erbium-ytterbium co-doped fiber. Photonic Sens. 2020, 10, 181–185. [Google Scholar]
- Chen, L.; Song, R. Random fiber laser directly generates visible to near-infrared supercontinuum. Opt. Express 2019, 27, 29781–29788. [Google Scholar] [PubMed]
- Gagne, M.; Kashyap, R. Random fiber Bragg grating Raman fiber laser. Opt. Lett. 2014, 39, 2755–2758. [Google Scholar] [PubMed]
- Xu, Y.; Gao, S. Low-noise Brillouin random fiber laser with a random grating-based resonator. Opt. Lett. 2016, 41, 3197. [Google Scholar] [PubMed]
- Wang, X.; Chen, D. Random fiber laser based on artificially controlled backscattering fibers. Appl. Opt. 2018, 57, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, D. Random fiber laser based on an artificially controlled backscattering erbium-doped fiber. Opt. Fiber Technol. 2020, 54, 102125. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, P. Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power. Laser Phys. Lett. 2014, 11, 075104. [Google Scholar] [CrossRef]
- Du, X.; Zhang, H. Short cavity-length random fiber laser with record power and ultrahigh efficiency. Opt. Lett. 2016, 41, 571–574. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zhang, H. High-power random distributed feedback fiber laser: From science to application. Ann. Phys. 2016, 528, 649–662. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Dong, J.; Feng, Y. High-power and high-order random Raman fiber lasers. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–6. [Google Scholar] [CrossRef]
- Xu, J.; Lou, Z. Incoherently pumped high-power linearly polarized single-mode random fiber laser: Experimental investigations and theoretical prospects. Opt. Express 2017, 25, 5609–5617. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Xu, J. Pump scheme optimization of an incoherently pumped high-power random fiber laser. Photonics Res. 2019, 7, 977–983. [Google Scholar] [CrossRef]
- Li, Y.; Lu, P. Random spaced index modulation for a narrow line-width tunable fiber laser with low intensity noise. Opt. Lett. 2014, 39, 2294–2297. [Google Scholar] [CrossRef]
- Huang, C.; Dong, X. Multiwavelength Brillouin-erbium random fiber laser incorporating a chirped fiber Bragg grating. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 294–298. [Google Scholar] [CrossRef]
- Broeng, J.; Mogilevstev, D. Photonic crystal fibers: A new class of optical waveguides. Opt. Fiber Technol. 1999, 5, 305–330. [Google Scholar] [CrossRef]
- Cerqueira, A.S. Recent progress and novel applications of photonic crystal fibers. Rep. Prog. Phys. 2010, 73, 024401. [Google Scholar] [CrossRef]
- Esposito, F.; Ranjan, R. Arc-induced long period gratings from standard to polarization-maintaining and photonic crystal fibers. Sensors 2018, 18, 918. [Google Scholar] [CrossRef] [Green Version]
- Maurya, J.B.; Francois, A. Two-dimensional layered nanomaterial-based one-dimensional photonic crystal refractive index sensor. Sensors 2018, 18, 857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yonenaga, Y.; Fujimura, R. Random laser of dye-injected holey photonic-crystal fiber. Phys. Rev. A 2015, 92, 013824. [Google Scholar] [CrossRef]
- Nagai, Y.; Shao-Chieh, C. Two-dimensional coherent random laser in photonic crystal fiber with dye-doped nematic liquid crystal. Appl. Opt. 2017, 56, 8969–8972. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xiang, D. Random Fabry–Perot resonator-based sub-kHz Brillouin fiber laser to improve spectral resolution in line-width measurement. Opt. Lett. 2015, 40, 1920–1923. [Google Scholar] [CrossRef]
- Pang, M.; Bao, X. Observation of narrow line-width spikes in the coherent Brillouin random fiber laser. Opt. Lett. 2013, 38, 1866–1868. [Google Scholar] [CrossRef]
- Pang, M.; Bao, X. Frequency stabilized coherent Brillouin random fiber laser: Theory and experiments. Opt. Express 2013, 21, 27155–27168. [Google Scholar] [CrossRef]
- Saxena, B.; Ou, Z. Low Frequency-noise random fiber laser with bidirectional SBS and Rayleigh feedback. IEEE Photonics Technol. Lett. 2015, 27, 490–493. [Google Scholar] [CrossRef]
- Xiang, D.; Lu, P. Random Brillouin fiber laser for tunable ultra-narrow line-width microwave generation. Opt. Lett. 2016, 41, 4839–4842. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xu, Y. Multiwavelength coherent Brillouin random fiber laser with ultrahigh optical signal-to-noise ratio. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–8. [Google Scholar] [CrossRef]
- Wang, L.; Dong, X. Tunable erbium-doped fiber laser based on random distributed feedback. IEEE Photonics J. 2014, 6, 1–5. [Google Scholar]
- Mathieu, G.; Kashyap, R. Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating. Opt. Express 2009, 17, 19067–19074. [Google Scholar]
- Zhang, W.L.; Song, Y.B. Temperature-controlled mode selection of Er-doped random fiber laser with disordered Bragg gratings. Photonics Res. 2016, 03, 50–53. [Google Scholar] [CrossRef]
- Popov, S.M.; Butov, O.V. Narrow line-width short cavity Brillouin random laser based on Bragg Grating array fiber and dynamical population inversion gratings. Results Phys. 2018, 9, 806–808. [Google Scholar] [CrossRef]
- Jin, X.; Du, X. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser. Sci. Rep. 2016, 6, 30052. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.Y.; Zhang, W. Output Characterization of random fiber laser formed by dispersion compensated fiber. IEEE Photonics Technol. Lett. 2014, 26, 246–248. [Google Scholar] [CrossRef]
- Zhang, W.L.; Zhu, Y.Y. Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber. Opt. Express 2013, 21, 8544–8549. [Google Scholar] [CrossRef]
- Maciej, C.; Rafał, W.; Iskierko, Z.; Węglowska, D.; Sharma, P.S.; Noworyta, K.R.; D’Souza, F.; Kutner, W. Protein determination with molecularly imprinted polymer recognition combined with birefringence liquid crystal detection. Sensors 2020, 20, 4692. [Google Scholar]
- Blank, A.; Guendelman, G.; Linzon, Y. Vapor sensing with polymer coated straight optical fiber microtapers based on index sensitive interference spectroscopy of surface stress birefringence. Sensors 2020, 20, 2675. [Google Scholar] [CrossRef] [PubMed]
- Zlobina, E.A.; Kablukov, S.I. Linearly polarized cascaded random fiber laser with ultimate efficiency. In Proceedings of the European Conference on Optical Communication, Valencia, Spain, 27 September–1 October 2015; IEEE: New York, NY, USA, 2015; pp. 1–3. [Google Scholar]
- Zlobina, E.A.; Kablukov, S.I. Linearly polarized random fiber laser with ultimate efficiency. Opt. Lett. 2015, 40, 4074–4077. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Y. Linearly polarized low-noise Brillouin random fiber laser. Opt. Lett. 2017, 42, 739–742. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, C. High-efficiency Brillouin random fiber laser using all-polarization maintaining ring cavity. Opt. Express 2017, 25, 11306–11314. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zhang, M.; Zhu, Y.; Ye, W.; Yang, F.; Wang, L. Analysis of the errors caused by disturbed multimode fibers in the interferometer with fiber-coupled delivery. Sensors 2020, 20, 1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Q.; Wu, H. Spectral tailoring of random fiber laser utilizing multimode fiber. In Proceedings of the Asia Communications and Photonics Conference (ACP), Hangzhou, China, 26–29 October 2018; IEEE: New York, NY, USA, 2018. [Google Scholar]
- Abidin, N.H.; Yao, L.K. Open Cavity Controllable dual-wavelength hybrid Raman-erbium random fiber laser. IEEE Photonics J. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, P. An Efficient 4-kW level random fiber laser based on a tandem-pumping scheme. IEEE Photonics Technol. Lett. 2019, 31, 817–820. [Google Scholar] [CrossRef]
- Li, T.; Li, Y. Power scaling of narrow-line-width fiber amplifier seeded by Yb-doped random fiber laser. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–8. [Google Scholar]
- Evmenova, E.A.; Kuznetsov, A.G. 2nd-order random laser in a multimode diode-pumped graded-index fiber. Sci. Rep. 2018, 8, 1–7. [Google Scholar] [CrossRef]
- Huang, L.; Xu, J. Power Scaling of linearly polarized random fiber laser. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–8. [Google Scholar] [CrossRef]
- Du, X.; Zhang, H. Kilowatt-level fiber amplifier with spectral-broadening-free property, seeded by a random fiber laser. Opt. Lett. 2015, 40, 5311–5314. [Google Scholar]
- Huang, L.; Xu, J. A 621 W linearly polarized, near-diffraction-limited MOPA seeded by random fiber laser. In Proceedings of the Conference on Lasers and Electro-Optics Pacific Rilm, Singapore, 31 July–4 August 2017. [Google Scholar]
- Xu, J.; Ye, J. Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality. Sci. China Technol. Sci. 2019, 62, 80–86. [Google Scholar]
- Zhu, Y.Y.; Zhang, W. Tunable Multi-wavelength fiber laser based on random Rayleigh back-scattering. IEEE Photonics Technol. Lett. 2013, 25, 1559–1561. [Google Scholar]
- Shawki, H.; Kotb, H. Single-longitudinal-mode broadband tunable random laser. Opt. Lett. 2017, 42, 3247–3250. [Google Scholar] [PubMed]
- Xu, Y.; Zhang, L. Single-mode SOA-based 1kHz-linewidth dual-wavelength random fiber laser. Opt. Express 2017, 25, 15828–15837. [Google Scholar]
- Saleh, S.; Cholan, N.A. Stable multiwavelength erbium-doped random fiber laser. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–6. [Google Scholar]
- Ye, J.; Zhang, Y. Broadband pumping enabled flat-amplitude multi-wavelength random Raman fiber laser. Opt. Lett. 2020, 45, 1786–1789. [Google Scholar]
- Sugavanam, S.; Tarasov, N. Narrow-band generation in random distributed feedback fiber laser. Opt. Express 2013, 21, 16466–16472. [Google Scholar]
- Li, Y.; Lu, P. Narrow linewidth low frequency noise Er-doped fiber ring laser based on femtosecond laser induced random feedback. Appl. Phys. Lett. 2014, 105, 558–559. [Google Scholar]
- Song, G.; Liang, Z. Tapered fiber based Brillouin random fiber laser and its application for linewidth measurement. Opt. Express 2016, 24, 28353–28360. [Google Scholar]
- Zhang, L.; Xu, Y. Multi-wavelength Brillouin random fiber laser via distributed feedback from a random fiber grating. J. Lightwave Technol. 2018, 36, 2122–2128. [Google Scholar] [CrossRef]
- Roriz, P.; Silva, S.; Frazão, O.; Novais, S. Optical fiber temperature sensors and their biomedical applications. Sensors 2020, 20, 2113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iñaki, A.L.; Rosa, A.P.; María, Á.Q.; Manuel, L.A.; Jose, M.L.H. Tunable dual-wavelength random distributed feedback fiber laser with bidirectional pumping source. J. Lightwave Technol. 2016, 34, 4148–4153. [Google Scholar]
- Frazão, O.; Correia, C.; Santos, J.L.; Baptista, J.M. Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain–temperature measurement. Meas. Sci. Technol. 2009, 20, 045203. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, W. Long-distance random fiber laser point sensing system incorporating active fiber. Opt. Express 2016, 24, 22448–22453. [Google Scholar] [CrossRef]
- Fernandezvallejo, M.; Bravo, M. Ultra-long laser systems for remote fiber Bragg gratings arrays interrogation. IEEE Photonics Technol. Lett. 2013, 25, 1362–1364. [Google Scholar]
- Jaharudin, N.A.; Cholan, N.A. Remote temperature sensing with a low-threshold-power erbium-doped fiber laser. Appl. Opt. 2019, 58, 6003–6006. [Google Scholar] [CrossRef]
- Miao, S.; Zhang, W. High-resolution static strain sensor based on random fiber laser and beat frequency interrogation. IEEE Photonics Technol. Lett. 2019, 31, 1530–1533. [Google Scholar] [CrossRef]
- Qiao, Y.; Zhou, Y.; Krishnaswamy, S. Adaptive demodulation of dynamic signals from fiber Bragg gratings using two-wave mixing technology. Appl. Opt. 2006, 45, 5132–5142. [Google Scholar] [CrossRef]
- Tsuda, H.; Kumakura, K.; Ogihara, S. Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain. Sensors 2010, 10, 11248–11258. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhang, L.; Gao, S. Highly sensitive fiber random-grating-based random laser sensor for ultrasound detection. Opt. Lett. 2017, 42, 1353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lu, P.; Zhou, Z.; Wang, Y.; Mihailov, S.; Chen, L.; Bao, X. High-efficiency random fiber laser based on strong random fiber grating for MHz ultrasonic sensing. IEEE Sens. J. 2020, 20, 5885–5892. [Google Scholar] [CrossRef]
- Jia, X.; Rao, Y. Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping. Opt. Express 2013, 21, 24611–24619. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhu, R. 175-km Repeaterless BOTDA with hybrid high-order random fiber laser amplification. J. Lightwave Technol. 2019, 37, 4680–4686. [Google Scholar] [CrossRef]
Year | Approach | Pump Power | Output Power |
---|---|---|---|
2011 | YDFL | 7.5 W | 3.8 W |
2014 | YDFL | 10 W | 7 W |
2014 | YDFL | 98.6 W | 73.7 W |
2015 | YDFL | 221.4 W | 193.5 W |
2015 | MOPA | 1381.4 W | 1.03 kW |
2017 | ASE source | 127 W | 104.8 W (second-order) |
2019 | MOPA | 3.61 kW | 3.03 kW |
2019 | YDFL | 1248 W | 985 W |
2019 | MOPA | 4.343 kW | 4.02 kW |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Gao, S.; Zhang, M.; Zhang, J.; Qiao, L.; Wang, T.; Gao, F.; Hu, X.; Li, S.; Zhu, Y. Advances in Random Fiber Lasers and Their Sensing Application. Sensors 2020, 20, 6122. https://doi.org/10.3390/s20216122
Chen H, Gao S, Zhang M, Zhang J, Qiao L, Wang T, Gao F, Hu X, Li S, Zhu Y. Advances in Random Fiber Lasers and Their Sensing Application. Sensors. 2020; 20(21):6122. https://doi.org/10.3390/s20216122
Chicago/Turabian StyleChen, Hong, Shaohua Gao, Mingjiang Zhang, Jianzhong Zhang, Lijun Qiao, Tao Wang, Fei Gao, Xinxin Hu, Shichuan Li, and Yicheng Zhu. 2020. "Advances in Random Fiber Lasers and Their Sensing Application" Sensors 20, no. 21: 6122. https://doi.org/10.3390/s20216122
APA StyleChen, H., Gao, S., Zhang, M., Zhang, J., Qiao, L., Wang, T., Gao, F., Hu, X., Li, S., & Zhu, Y. (2020). Advances in Random Fiber Lasers and Their Sensing Application. Sensors, 20(21), 6122. https://doi.org/10.3390/s20216122