A Global Path Planner for Safe Navigation of Autonomous Vehicles in Uncertain Environments
Abstract
:1. Introduction
2. Related Works
3. Method
3.1. Fuzzy Logic
3.2. Uncertainty Indicator
- Tunnel/bridge, building, tree length— {occlusive, clear}
- Slope angle— {uncovered, covered}
- Time— {dim, bright}
- Visibility— {unclear, clear}
- Snow depth— {obscured, clear}
- Rainfall intensity— {obscured, clear}
- Fog— {unclear, clear}
- Rule 1: If a parameter value is clear, covered, and bright, then the risk is low.
- Rule 2: If a parameter value is occlusive, uncovered, dim, unclear, or obscured, then the risk is high.
3.3. Path Finder
3.3.1. Path Computation
3.3.2. Path Update
Algorithm 1: Path Update Algorithm |
|
3.3.3. Uncertainty Storage
4. Evaluation and Discussion
5. Conclusions and Future Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Crowley, J.L. Navigation for an Intelligent Mobile Robot. IEEE J. Robot. Autom. 1985, 1, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Alharbi, M.; Karimi, H.A. PROBE: Preparing for Roads in Advance of Barriers and Errors. In Proceedings of the Future Technologies Conference (FTC) 2019; Arai, K., Bhatia, R., Kapoor, S., Eds.; Advances in Intelligent Systems and Computing; Springer: Basel, Switzerland, 2020; Volume 1069, pp. 934–957. [Google Scholar] [CrossRef]
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef] [Green Version]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Kavraki, L.E.; Švestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [Google Scholar] [CrossRef] [Green Version]
- LaValle, S.M.; Kuffner, J.J. Randomized kinodynamic planning. Int. J. Robot. Res. 2001, 20, 378–400. [Google Scholar] [CrossRef]
- Paden, B.; Čáp, M.; Yong, S.Z.; Yershov, D.; Frazzoli, E. A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles. IEEE Trans. Intell. Veh. 2016, 1, 33–55. [Google Scholar] [CrossRef] [Green Version]
- Hoang, V.D.; Jo, K.H. Path planning for autonomous vehicle based on heuristic searching using online images. Vietnam. J. Comput. Sci. 2015, 2, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Goodrich, M.T.; Pszona, P. Two-phase Bicriterion Search for Finding Fast and Efficient Electric Vehicle Routes. In Proceedings of the 22Nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, New York, NY, USA, 4–7 November 2014; pp. 193–202. [Google Scholar] [CrossRef] [Green Version]
- Baum, M.; Dibbelt, J.; Pajor, T.; Wagner, D. Energy-optimal routes for electric vehicles. In Proceedings of the ACM International Symposium on Advances in Geographic Information Systems, Orlando, FL, USA, 5–8 November 2013. [Google Scholar] [CrossRef] [Green Version]
- Artmeier, A.; Haselmayr, J.; Leucker, M.; Sachenbacher, M. The shortest path problem revisited: Optimal routing for electric vehicles. In KI 2010: Advances in Artificial Intelligence; Dillmann, R., Beyerer, J., Hanebeck, U.D., Schultz, T., Eds.; Springer: Basel, Switzerland, 2010; Chapter 2; pp. 309–316. [Google Scholar] [CrossRef] [Green Version]
- Eisner, J.; Funke, S.; Storandt, S. Optimal route planning for electric vehicles in large networks. In Proceedings of the National Conference on Artificial Intelligence, San Francisco, CA, USA, 7–11 August 2011. [Google Scholar]
- Sachenbacher, M.; Leucker, M.; Artmeier, A.; Haselmayr, J. Efficient energy-optimal routing for electric vehicles. In Proceedings of the National Conference on Artificial Intelligence, San Francisco, CA, USA, 7–11 August 2011. [Google Scholar]
- Feillet, D.; Dejax, P.; Gendreau, M.; Gueguen, C. An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems. Networks 2004, 44, 216–229. [Google Scholar] [CrossRef]
- Almoustafa, S.; Hanafi, S.; Mladenović, N. New exact method for large asymmetric distance-constrained vehicle routing problem. Eur. J. Oper. Res. 2013, 226, 386–394. [Google Scholar] [CrossRef]
- Han, D.H.; Kim, Y.D.; Lee, J.Y. Multiple-criterion shortest path algorithms for global path planning of unmanned combat vehicles. Comput. Ind. Eng. 2014, 71, 57–69. [Google Scholar] [CrossRef]
- Simon, D. The application of neural networks to optimal robot trajectory planning. Robot. Auton. Syst. 1993, 11, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Piazzi, A.; Visioli, A. Global minimum-jerk trajectory planning of robot manipulators. IEEE Trans. Ind. Electron. 2000, 47, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Kaelbling, L.P.; Littman, M.L.; Cassandra, A.R. Planning and acting in partially observable stochastic domains. Artif. Intell. 1998, 101, 99–134. [Google Scholar] [CrossRef] [Green Version]
- Smallwood, R.D.; Sondik, E.J. The optimal control of partially observable Markov processes over a finite horizon. Oper. Res. 1973, 21, 1071–1088. [Google Scholar] [CrossRef]
- Sondik, E.J. The optimal control of partially observable Markov processes over the infinite horizon: Discounted costs. Oper. Res. 1978, 26, 282–304. [Google Scholar] [CrossRef]
- Prentice, S.; Roy, N. The belief roadmap: Efficient planning in belief space by factoring the covariance. Int. J. Robot. Res. 2009, 28, 1448–1465. [Google Scholar] [CrossRef]
- Platt, R.; Tedrake, R.; Kaelbling, L.; Lozano-Pérez, T. Belief space planning assuming maximum likelihood observations. In Proceedings of the Robotics: Science and Systems VI, Zaragoza, Spain, 27–30 June 2010. [Google Scholar] [CrossRef]
- Van Den Berg, J.; Abbeel, P.; Goldberg, K. LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information. Int. J. Robot. Res. 2011, 30, 895–913. [Google Scholar] [CrossRef]
- Bry, A.; Roy, N. Rapidly-exploring random belief trees for motion planning under uncertainty. In Proceedings of the 2011 IEEE international conference on robotics and automation, Shanghai, China, 9–13 May 2011; pp. 723–730. [Google Scholar]
- Van Den Berg, J.; Patil, S.; Alterovitz, R. Motion planning under uncertainty using iterative local optimization in belief space. Int. J. Robot. Res. 2012, 31, 1263–1278. [Google Scholar] [CrossRef]
- Sun, W.; van den Berg, J.; Alterovitz, R. Stochastic extended LQR for optimization-based motion planning under uncertainty. IEEE Trans. Autom. Sci. Eng. 2016, 13, 437–447. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, E.; Hegarty, C.J. Understanding GPS/GNSS: Principles and Applications, 3rd ed.; Artech House Inc: Massachusetts, MA, USA, 2017. [Google Scholar]
- Roongpiboonsopit, D.; Karimi, H.A. Integrated global navigation satellite system (iGNSS) QoS prediction. Photogramm. Eng. Remote Sens. 2012, 78, 139–149. [Google Scholar] [CrossRef]
- Hsu, L.T.; Tokura, H.; Kubo, N.; Gu, Y.; Kamijo, S. Multiple faulty GNSS measurement exclusion based on consistency check in urban canyons. IEEE Sens. J. 2017, 17, 1909–1917. [Google Scholar] [CrossRef] [Green Version]
- Hasirlioglu, S.; Doric, I.; Lauerer, C.; Brandmeier, T. Modeling and simulation of rain for the test of automotive sensor systems. In Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, 19–22 June 2016; pp. 286–291. [Google Scholar]
- Hasirlioglu, S.; Doric, I.; Kamann, A.; Riener, A. Reproducible Fog Simulation for Testing Automotive Surround Sensors. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, NSW, Australia, 4–7 June 2017; pp. 1–7. [Google Scholar]
- Heinzler, R.; Schindler, P.; Seekircher, J.; Ritter, W.; Stork, W. Weather Influence and Classification with Automotive Lidar Sensors. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 1527–1534. [Google Scholar] [CrossRef] [Green Version]
- Sasiadek, J.Z.; Wang, Q. Sensor fusion based on fuzzy Kalman filtering for autonomous robot vehicle. In Proceedings of the 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), Detroit, MI, USA, 10–15 May 1999; pp. 2970–2975. [Google Scholar]
- Bento, L.C.; Nunes, U.; Moita, F.; Surrecio, A. Sensor fusion for precise autonomous vehicle navigation in outdoor semi-structured environments. In Proceedings of the 2005 IEEE Intelligent Transportation Systems, Vienna, Austria, 16 September 2005; pp. 245–250. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Driankov, D.; Hellendoorn, H.; Reinfrank, M. An Introduction to Fuzzy Control; Springer Science & Business Media: Berlin, Germany, 1993. [Google Scholar] [CrossRef]
Sensor | Road Infrastructure | Time | Weather |
---|---|---|---|
GNSS | Tunnels/bridges | ||
High-rise buildings | |||
Dense trees | |||
Camera | Slope | Night | Fog Rain Snow visibility |
LiDAR |
Sensor | Parameter | Unit |
---|---|---|
GNSS | Tunnel/bridge length | km |
Building length | m | |
Tree length | m | |
Camera | Slope angle | radians |
Time | HH:mm | |
Visibility (MOR) | km | |
LiDAR | Slope angle | radians |
Snow depth | cm | |
Rainfall intensity | mm/h | |
Fog (MOR) | km |
Risk | Parameter | Fuzzy Set |
---|---|---|
Tunnel/bridge length | occlusive | |
Building length | occlusive | |
Tree length | occlusive | |
Slope angle | uncovered | |
High | Time | dim |
Visibility | unclear | |
Snow depth | obscured | |
Rainfall intensity | obscured | |
Fog | unclear | |
Tunnel/bridge length | clear | |
Building length | clear | |
Tree length | clear | |
Slope angle | covered | |
Low | Time | bright |
Visibility | clear | |
Snow depth | clear | |
Rainfall intensity | clear | |
Fog | clear |
Paremeter | Value | Unit | Sensors Specifications | |||
---|---|---|---|---|---|---|
Tunnel/bridge length | 0.5 | km | Sensor | Paremeter | Value | Unit |
High-rise building length | 200 | m | Camera | optical angle | 10 | deg. |
Dense tree length | 100 | m | aperture angle | 80 | deg. | |
Time | 07:20 | HH:mm | observable distance | 120 | m | |
07:20 | HH:mm | camera height | 1.9 | m | ||
Visibility | 5 | km | LiDAR | optical angle | 5 | deg. |
Snow depth | 10 | cm | vertical FOV | 64 | deg. | |
Rainfall intensity | 20 | mm/h | distance range | 200 | m | |
Fog | 5 | km | LiDAR height | 1.9 | m | |
Risk percent | 50 | percent |
Scenario | |||
---|---|---|---|
A | 1 | 1 | 1 |
B.1 | 1 | 0.5 | 0.5 |
B.2 | 0.5 | 1 | 0.5 |
B.3 | 0.5 | 0.5 | 1 |
C.1 | 1 | 1 | 0.5 |
C.2 | 1 | 0.5 | 1 |
C.3 | 0.5 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, M.; Karimi, H.A. A Global Path Planner for Safe Navigation of Autonomous Vehicles in Uncertain Environments. Sensors 2020, 20, 6103. https://doi.org/10.3390/s20216103
Alharbi M, Karimi HA. A Global Path Planner for Safe Navigation of Autonomous Vehicles in Uncertain Environments. Sensors. 2020; 20(21):6103. https://doi.org/10.3390/s20216103
Chicago/Turabian StyleAlharbi, Mohammed, and Hassan A. Karimi. 2020. "A Global Path Planner for Safe Navigation of Autonomous Vehicles in Uncertain Environments" Sensors 20, no. 21: 6103. https://doi.org/10.3390/s20216103
APA StyleAlharbi, M., & Karimi, H. A. (2020). A Global Path Planner for Safe Navigation of Autonomous Vehicles in Uncertain Environments. Sensors, 20(21), 6103. https://doi.org/10.3390/s20216103