Analytical Modelling of MSW Landfill Surface Displacement Based on GNSS Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Models of the Landfill Settlement Prediction—A Review
2.2. Description of the Study Area—MSW Landfill Štěpánovice
2.3. Input Data Analysis
3. Results of Displacement Modelling and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Younes, M.K.; Nopiah, Z.M.; Basri, N.E.A.; Basri, H.; Abushammala, M.F.M.; Younes, M.Y. Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model. Waste Manag. 2016, 55, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Vaverková, M.D.; Radziemska, M.; Barton, S.; Cerda, A.; Koda, E. The use of vegetation as a natural strategy for landfill restoration. Land Degrad. Dev. 2018, 29, 3674–3680. [Google Scholar] [CrossRef]
- McDougall, J. Settlements—The short and the long of it. Geotechnical Characterization, Field Measurement and Laboratory Testing of Municipal Solid Waste. ASCE Geotech. Spec. Publ. 2011, 209, 76–111. [Google Scholar]
- Koda, E.; Kiersnowska, A.; Kawalec, J.; Osiński, P. Landfill Slope Stability Improvement Incorporating Reinforcements in Reclamation Process Applying Observational Method. Appl. Sci. 2020, 10, 1572. [Google Scholar] [CrossRef] [Green Version]
- Melo, M.C.; Caribé, R.M.; Ribeiro, L.S.; Sousa, R.B.A.; Monteiro, V.E.D.; De Paiva, W. Settlement behavior of municipal solid waste due to internal and external environmental factors in a lysimeter. J. Environ. Sci. Health Part A Toxic Hazard. Subst. Environ. Eng. 2016, 51, 1205–1215. [Google Scholar] [CrossRef]
- Sowers, G.F. Settlement of Waste Disposal Fills. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1975, 12, 57–58. [Google Scholar] [CrossRef]
- Koda, E.; Zakowicz, S. Physical and hydraulics properties of the MSW for water balance of the landfill. In Proceedings of the 3rd International Congress on Environmental Geotechnics, Lisboa, Portugal, 7–11 September 1998; pp. 217–222. [Google Scholar]
- Simões, G.F.; Catapreta, C.A. Monitoring and modeling of long-term settlements of an experimental landfill in Brazil. Waste Manag. 2013, 33, 420–430. [Google Scholar] [CrossRef]
- Feng, S.J.; Gao, K.W.; Chen, Y.X.; Li, Y.; Zhang, L.M.; Chen, H.X. Geotechnical properties of municipal solid waste at Laogang Landfill, China. Waste Manag. 2017, 63, 354–365. [Google Scholar] [CrossRef]
- Yu, Y.; Rowe, R.K. Modelling deformation and strains induced by waste settlement in a centrifuge test. Can. Geotech. J. 2018, 55, 1116–1129. [Google Scholar] [CrossRef] [Green Version]
- Bente, S.; Krase, V.; Kowalsky, U.; Dinkler, D. Model for degradation induced settlements as part of a coupled landfill model. Int. J. Numer. Anal. Methods Geomech. 2017, 41, 1390–1410. [Google Scholar] [CrossRef]
- Reddy, K.R.; Kumar, G.; Giri, R.K. Modeling coupled processes in municipal solid waste landfills: An overview with key engineering challenges. Int. J. Geosynth. Ground Eng. 2017, 3, 6. [Google Scholar] [CrossRef]
- Top, S.; Akkaya, G.K.; Demir, A.; Yildiz, S.; Balahorli, V.; Aykut, N.O.; Bilgili, M.S. Investigation of solid waste characteristics in field-scale landfill test cells. Glob. Nest. J. 2019, 21, 153–162. [Google Scholar]
- Gao, W.; Xu, W.; Bian, X.; Chen, Y. A practical approach for calculating the settlement and storage capacity of landfills based on the space and time discretization of the landfilling process. Waste Manag. 2017, 69, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Hettiarachchi, H.; Meegoda, J.; Hettiaratchi, P. Effects of gas and moisture on modeling of bioreactor landfill settlement. Waste Manag. 2009, 29, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Hyun, I.P.; Park, B.; Seung, R.L. Analysis of long-term settlement of municipal solid waste landfills as determined by various settlement estimation methods. J. Air Waste Manag. Assoc. 2007, 57, 243–251. [Google Scholar]
- Vaverková, M.D. Impact assessment of the municipal solid landfill on environment: A case study. Acta Sci. Pol. Archit. 2019, 18, 11–20. [Google Scholar] [CrossRef]
- Park, H.I.; Lee, S.R. Long-term settlement behavior of landfills with refuse decomposition. J. Solid Waste Technol. Manag. 1997, 24, 159–165. [Google Scholar]
- Machado, S.L.; Vilar, O.M.; Carvalho, M.F. Constitutive model for long-term municipal solid waste mechanical behaviour. Comput. Geotech. 2008, 35, 775–790. [Google Scholar] [CrossRef]
- Machado, S.L.; Carvalho, M.F.; Vilar, O.M. Constitutive model for municipal solid waste. J. Geotech. Geoenviron. Eng. 2002, 128, 942–951. [Google Scholar] [CrossRef]
- Marques, A.C.M.; Filz, G.M.; Vilar, O.M. Composite compressibility model for municipal solid waste. J. Geotech. Geoenviron. Eng. 2003, 129, 372–378. [Google Scholar] [CrossRef]
- Reddy, K.R.; Hettiarachchi, H.; Parakalla, N.S.; Gangathulasi, J.; Bogner, J.E. Geotechnical properties of fresh municipal solid waste at Orchard Hills Landfill, USA. Waste Manag. 2009, 29, 952–959. [Google Scholar] [CrossRef] [PubMed]
- El-Fadel, M.; Khoury, R. Modeling settlement in MSW landfills: A critical review. Crit. Rev. Environ. Sci. Technol. 2000, 30, 327–361. [Google Scholar] [CrossRef]
- Van Geel, P.; Murray, K. Simulating settlement during waste placement at a landfill with waste lifts placed under frozen conditions. Waste Manag. 2015, 46, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Araújo Neto, C.L.; Nóbrega, B.M.A.; Sousa, R.B.A.; Melo, M.C.; Paiva, W.; Monteiro, V.E.D. Statistical Modeling of Municipal Solid Waste Settlement from a Lysimeter. Soils Rocks 2017, 40, 51–59. [Google Scholar]
- Bareither, C.A.; Kwak, S. Assessment of municipal solid waste settlement models based on field-scale data analysis. Waste Manag. 2015, 42, 101–117. [Google Scholar] [CrossRef] [Green Version]
- Baiocchi, V.; Quintilio, N.; Martina, T.; Giampaolo, S.; Maria, A.; Domenica, C. UAV for monitoring the settlement of a landfill. Eur. J. Remote Sens. 2019, 52, 41–52. [Google Scholar] [CrossRef]
- Remez, N.; Osipova, T.; Kraychuk, O.; Kraychuk, S. Simulation of the solid waste landfill settlement taking into account underlying soil. East Eur. J. Enterp. Technol. 2016, 3, 12–17. [Google Scholar] [CrossRef]
- Esteban-Altabella, J.; McDougall, J.; Colomer-Mendoza, F.J.; Gallardo, A.; Edo-Alcón, N. Review and application of a settlement model for landfills. In Proceedings of the Sardinia 16th International Waste Management and Landfill Symposium, Cagliari, Italy, 2–6 October 2017. [Google Scholar]
- Topolnicki, M. Municipal solid waste settlement (MSWS) model with account for integrated creep and degradation process. Arch. Hydro Eng. Environ. Mech. 2004, 51, 267–286. [Google Scholar]
- Bareither, C.A.; Benson, C.H.; Edil, T.B. Compression of municipal solid waste in bioreactor landfills: Mechanical creep and biocompression. J. Geotech. Geoenviron. Eng. 2013, 139, 1007–1021. [Google Scholar] [CrossRef]
- Ivanova, L.K.; Richards, D.J.; Smallman, D.J. The long-term settlement of landfill waste. In Proceedings of the Institution of Civil Engineers–Waste and Resource Management; Thomas Telford Ltd.: London, UK, 2008; Volume 161, pp. 121–133. [Google Scholar]
- Vaverková, M.; Adamcová, D. Long-Term Temperature Monitoring of a Municipal Solid Waste Landfill. Pol. J. Environ. Stud. 2015, 24, 1373–1378. [Google Scholar] [CrossRef]
- Tahmoorian, F.; Khabbaz, H. Performance comparison of a MSW settlement prediction model in Tehran landfill. J. Environ. Manag. 2020, 254, 109809. [Google Scholar] [CrossRef] [PubMed]
- Cuartas, M.; López, A.; Pérez, F.; Lobo, A. Analysis of landfill design variables based on scientific computing. Waste Manag. 2018, 71, 287–300. [Google Scholar] [CrossRef]
- Ling, H.I.; Leshchinsky, D.; Mohri, Y.; Kawabata, T. Estimation of municipal solid waste landfill settlement. J. Geotech. Geoenviron. Eng. 1998, 1, 21–28. [Google Scholar] [CrossRef]
- Hadinata, F.; Damanhuri, E.; Rahardyan, B.; Widyarsana, I.M.W. Identification of initial settlement of municipal solid waste layers in Indonesian landfill. Waste Manag. Res. 2018, 36, 737–743. [Google Scholar] [CrossRef]
- Xu, H.; Qiu, H.; Zhu, G.; Zhan, L.T.; Zhang, Z.Y.; Xu, X.B.; Chen, Y.M.; Wang, Y.Z. Comparison of settlement behaviors of high-food-waste-content (HFWC) and low-food-waste-content (LFWC) MSWs and assessment of their prediction models. Sci. China Technol. Sci. 2019, 62, 1–22. [Google Scholar] [CrossRef]
- Bjarngard, A.; Edgers, L. Settlement of Municipal Solid Waste Landfills. In Proceedings of the 13th Annual Madison Waste Conference, Madison, WI, USA, 19–20 September 1990; pp. 192–205. [Google Scholar]
- Hossain, M.S.; Gabr, M.A. Prediction of municipal solid waste landfill settlement with leachate recirculation. In Waste Containment and Remediation; ASCE: Austin, TX, USA, 2005; pp. 1–14. [Google Scholar]
- Gibson, R.E.; Lo, K.Y. A Theory for Soils Exhibiting Secondary Compression. Acta Polytech. Scand. 1961, 296, 1–16. [Google Scholar]
- Yen, B.C.; Scanlon, B. Sanitary landfill settlement rates. J. Geotech. Geoenviron. Eng. 1975, 101, 475–487. [Google Scholar]
- Edil, T.B.; Ranguette, V.J.; Wuellner, W.W. Settlement of municipal refuse. In Geotechnics of Waste Fills—Theory and Practice; ASTM International: West Conshohocken, PA, USA, 1990; pp. 225–239. [Google Scholar]
- Schneider, P.; Oswald, K.D.; Weiß, B.; Littmann, R. Assessing Geotechnical Risks in the Frame of Landfill Engineering in Eastern Europe. J. Geol. Res. Eng. 2017, 1, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Liu, P.; Zhou, C.; Huang, Y.; Zhang, L. Structural Health Monitoring of Underground Structures in Reclamation Area Using Fiber Bragg Grating Sensors. Sensors 2019, 19, 2849. [Google Scholar] [CrossRef] [Green Version]
- Wilk, A.; Koc, W.; Specht, C.; Judek, S.; Karwowski, K.; Chrostowski, P.; Czaplewski, K.; Dabrowski, P.S.; Grulkowski, S.; Licow, R.; et al. Digital Filtering of Railway Track Coordinates in Mobile Multi–Receiver GNSS Measurements. Sensors 2020, 20, 5018. [Google Scholar] [CrossRef]
- Chang, L.; Niu, X.; Liu, T. GNSS/IMU/ODO/LiDAR-SLAM Integrated Navigation System Using IMU/ODO Pre-Integration. Sensors 2020, 20, 4702. [Google Scholar] [CrossRef] [PubMed]
- Dardanelli, G.; La Loggia, G.; Perfetti, N.; Capodici, F.; Puccio, L.; Maltese, A. Monitoring displacements of an earthen dam using GNSS and remote sensing. In Remote Sensing for Agriculture, Ecosystems and Hydrology XVI; SPIE: Bellingham, WA, USA, 2014; Volume 9239, p. 923928. [Google Scholar]
- Ren, F.; Ji, S.; Liu, Y.; Shi, Y.; Zhu, L. Application of Gauss–Newton Iteration Algorithm on Winding Radial Deformation Diagnosis. IEEE Trans. Power Deliv. 2019, 34, 1736–1746. [Google Scholar] [CrossRef]
- Carpio, A.; Dimiduk, T.G.; Le Louër, F.; Rapun, M.L. When topological derivatives met regularized Gauss-Newton iterations in holographic 3D imaging. J. Comput. Phys. 2019, 388, 224–251. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Hodis, S.; O’Regan, D. Runge-Kutta Method. In 500 Examples and Problems of Applied Differential Equations; Series: Problem Books in Mathematics; Springer: Berlin/Heidelberg, Germany, 2019; pp. 163–182. [Google Scholar]
- Tang, A.M.; Hughes, P.N.; Dijkstra, T.A.; Askarinejad, A.; Brenčič, M.; Cui, Y.J.; Diez, J.J.; Firgi, T.; Gajewska, B.; Gentile, F.; et al. Atmosphere–vegetation–soil interactions in a climate change context; impact of changing conditions on engineered transport infrastructure slopes in Europe. Q. J. Eng. Geol. Hydrogeol. 2018, 51, 156–168. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamcová, D.; Bartoň, S.; Osinski, P.; Pasternak, G.; Podlasek, A.; Vaverková, M.D.; Koda, E. Analytical Modelling of MSW Landfill Surface Displacement Based on GNSS Monitoring. Sensors 2020, 20, 5998. https://doi.org/10.3390/s20215998
Adamcová D, Bartoň S, Osinski P, Pasternak G, Podlasek A, Vaverková MD, Koda E. Analytical Modelling of MSW Landfill Surface Displacement Based on GNSS Monitoring. Sensors. 2020; 20(21):5998. https://doi.org/10.3390/s20215998
Chicago/Turabian StyleAdamcová, Dana, Stanislav Bartoň, Piotr Osinski, Grzegorz Pasternak, Anna Podlasek, Magdalena Daria Vaverková, and Eugeniusz Koda. 2020. "Analytical Modelling of MSW Landfill Surface Displacement Based on GNSS Monitoring" Sensors 20, no. 21: 5998. https://doi.org/10.3390/s20215998
APA StyleAdamcová, D., Bartoň, S., Osinski, P., Pasternak, G., Podlasek, A., Vaverková, M. D., & Koda, E. (2020). Analytical Modelling of MSW Landfill Surface Displacement Based on GNSS Monitoring. Sensors, 20(21), 5998. https://doi.org/10.3390/s20215998