Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = landfill displacements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2544 KiB  
Article
Integrating Socio-Demographic and Local Sustainability Indicators: Implications for Urban Health and Children’s Vulnerability in Henequén Neighborhood in Cartagena, Colombia
by Irina P. Tirado-Ballestas, Jorge L. Gallego, Rohemi Zuluaga-Ortiz, Vladimir Roa-Pérez, Alejandro Silva-Cortés, María C. Sarmiento and Enrique J. De la Hoz-Domínguez
Urban Sci. 2025, 9(6), 220; https://doi.org/10.3390/urbansci9060220 - 13 Jun 2025
Viewed by 1167
Abstract
This study integrates socio-demographic factors and local sustainability indicators to assess their implications for public health and social vulnerability in the Henequén neighborhood of Cartagena, Colombia. This historically marginalized community, primarily composed of women and displaced families, faces chronic exposure to environmental contaminants [...] Read more.
This study integrates socio-demographic factors and local sustainability indicators to assess their implications for public health and social vulnerability in the Henequén neighborhood of Cartagena, Colombia. This historically marginalized community, primarily composed of women and displaced families, faces chronic exposure to environmental contaminants due to its past as a municipal landfill. Poor housing conditions, overcrowding, and inadequate access to water and sanitation services exacerbate health risks. Additionally, low educational attainment and limited economic opportunities contribute to cycles of poverty and illicit activities, disproportionately affecting children’s development. Using a cross-sectional and correlational approach, the study identifies key variables, such as housing conditions, access to basic services, and marital status, that shape social vulnerability. The findings are analyzed in the context of the United Nations Sustainable Development Goals (SDGs), particularly SDG 3 (Good Health and Well-being), SDG 6 (Clean Water and Sanitation), and SDG 11 (Sustainable Cities and Communities). The study highlights critical gaps in sustainability efforts and provides a framework for assessing local progress toward achieving these global development objectives. Full article
Show Figures

Figure 1

18 pages, 1162 KiB  
Article
Comparative Screening Life Cycle Assessments of Okara Valorisation Scenarios
by Karina Rohrer, Fabian Whitfield, Aunchalee Aussanasuwannakul, Andriati Ningrum, Christoph Hugi and Lena Breitenmoser
Environments 2025, 12(3), 93; https://doi.org/10.3390/environments12030093 - 15 Mar 2025
Viewed by 1411
Abstract
The rising global production of tofu and soymilk has led to an increase in okara byproduct generation, creating a need for sustainable valorisation strategies to reduce environmental burdens. This study aims to understand the environmental impacts of seven okara valorisation scenarios compared to [...] Read more.
The rising global production of tofu and soymilk has led to an increase in okara byproduct generation, creating a need for sustainable valorisation strategies to reduce environmental burdens. This study aims to understand the environmental impacts of seven okara valorisation scenarios compared to conventional disposal methods, such as landfilling and incineration, by conducting screening Life Cycle Assessments (LCAs). The results show that uncontrolled landfilling causes the highest environmental burden (37.2 EF-µPt/kgokara), driven by methane and ammonia emissions that contribute to climate change, acidification, eutrophication, and particulate matter formation. Controlled landfilling (10.2 EF-µPt/kgokara) and incineration (2.5 EF-µPt/kgokara) lower these impacts but offer no circularity benefits. Biological treatments, such as anaerobic digestion (19.6 EF-µPt/kgokara), composting (25.4 EF-µPt/kgokara), and black soldier fly treatment (21.6 EF-µPt/kgokara), provide climate benefits through energy recovery and feed production but introduce ammonia and organic dust emissions. In contrast, supercritical fluid extraction (−32.3 EF-µPt/kgokara) and conventional protein hydrolysate production (−23.4 EF-µPt/kgokara) deliver the greatest environmental savings by displacing soy protein and food-grade oil production. Animal feed use (−5.5 EF-µPt/kgokara) emerges as a low-impact circular option, reducing climate change, land use, and eutrophication. The results show that regional weighting of emissions (e.g., ammonia, leachate) and uncertainties in substitution effects significantly influence outcomes. This study highlights the value of screening LCAs in identifying key environmental trade-offs in valorisation strategies and supports context-specific decision-making for circular processes. Full article
(This article belongs to the Special Issue Waste Management and Life Cycle Assessment)
Show Figures

Figure 1

28 pages, 9825 KiB  
Article
Study on the Application and Deformation Characteristics of Construction Waste Recycled Materials in Highway Subgrade Engineering
by Yuan Mei, Hongping Lu, Xueyan Wang, Bingyu Zhou, Ziyang Liu and Lu Wang
Buildings 2025, 15(5), 835; https://doi.org/10.3390/buildings15050835 - 6 Mar 2025
Viewed by 999
Abstract
It is difficult to meet environmental requirements via the coarse treatment methods of landfilling and open-air storage of construction waste. At the same time, the consumption of building materials in highway engineering is enormous. Using construction waste as a filling material for proposed [...] Read more.
It is difficult to meet environmental requirements via the coarse treatment methods of landfilling and open-air storage of construction waste. At the same time, the consumption of building materials in highway engineering is enormous. Using construction waste as a filling material for proposed roads has become a research hotspot in recent years. This paper starts with basic performance tests of recycled construction waste materials, and then moves on to laboratory experiments conducted to obtain the road performance of the recycled materials, the testing of key indicators of post-construction filling quality of the roadbed, and analyses of the deformation pattern of roadbed filled with construction waste. Additionally, the ABAQUS finite element software was used to establish a numerical model for roadbed deformation and analyze the roadbed deformation under different compaction levels and vehicle load conditions. The experimental results show that the recycled material has a moisture content of 8.5%, water absorption of 11.73%, and an apparent density of 2.61 g/cm3, while the liquid limit of fine aggregates is 20% and the plasticity index is 5.4. Although the physical properties are slightly inferior to natural aggregates, its bearing ratio (25–55%) and low expansion characteristics meet the requirements for high-grade highway roadbed filling materials. The roadbed layer with a loose compaction of 250 mm, after eight passes of rolling, showed a settlement difference of less than 5 mm, with the loose compaction coefficient stabilizing between 1.15 and 1.20. Finite element simulations indicated that the total settlement of the roadbed stabilizes at 20–30 mm, and increasing the compaction level to 96% can reduce the settlement by 2–4%. Vehicle overload causes a positive correlation between the vertical displacement and shear stress in the base layer, suggesting the need to strengthen vehicle load control. The findings provide theoretical and technical support for the large-scale application of recycled construction waste materials in roadbed engineering. Full article
(This article belongs to the Topic Sustainable Building Materials)
Show Figures

Figure 1

10 pages, 5129 KiB  
Commentary
Challenging the Chemistry of Climate Change
by Bruce Peachey and Nobuo Maeda
Chemistry 2024, 6(6), 1439-1448; https://doi.org/10.3390/chemistry6060086 - 16 Nov 2024
Cited by 2 | Viewed by 5806
Abstract
As talk grows about billions or even trillions of dollars being directed toward potential “Net Zero” activities, it is imperative that the chemistry inherent in or driving those actions make scientific sense. The challenge is to close the mass and energy balances to [...] Read more.
As talk grows about billions or even trillions of dollars being directed toward potential “Net Zero” activities, it is imperative that the chemistry inherent in or driving those actions make scientific sense. The challenge is to close the mass and energy balances to the carbon and oxygen cycles in the Earth’s atmosphere and oceans. Several areas of climate science have been identified that chemists can investigate through methods that do not require a supercomputer or a climate model for investigation, most notably the following: (1) The carbon cycle, which still needs to be balanced, as many known streams, such as carbon to landfills, carbon in human-enhanced sewage and land runoff streams, and carbon stored in homes and other material, do not seem to have been accounted for in carbon balances used by the IPCC. (2) Ocean chemistry and balances are required to explain the causes of regional and local-scale salinity, pH, and anoxic conditions vs. global changes. For example, local anoxic conditions are known to be impacted by changes in nutrient discharges to oceans, while large-scale human diversions of fresh water streams for irrigation, power, and industrial cooling must have regional impacts on oceanic salinity and pH. (3) Carbon Capture and Storage (CCS) schemes, if adopted on the large scales being proposed (100s to 1000s of Gt net injection by 2100), should impact the composition of the atmosphere by reducing free oxygen, adding more water from combustion, and displacing saline water from subsurface aquifers. Data indicate that atmospheric oxygen is currently dropping at about twice the rate of CO2 concentrations increasing, which is consistent with combustion chemistry with 1.5 to 2 molecules of oxygen being converted through combustion to 1 molecule of CO2 and 1 to 2 molecules of H2O, with reverse reactions occurring as a result of oxygenic photosynthesis by increased plant growth. The CCS schemes will sabotage these reverse reactions of oxygenic photosynthesis by permanently sequestering the oxygen atoms in each CO2 molecule. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

16 pages, 5554 KiB  
Article
Unmanned Aerial Vehicle Photogrammetry for Monitoring the Geometric Changes of Reclaimed Landfills
by Grzegorz Pasternak, Klaudia Pasternak, Eugeniusz Koda and Paweł Ogrodnik
Sensors 2024, 24(22), 7247; https://doi.org/10.3390/s24227247 - 13 Nov 2024
Cited by 2 | Viewed by 1455
Abstract
Monitoring reclaimed landfills is essential for ensuring their stability and monitoring the regularity of facility settlement. Insufficient recognition of the magnitude and directions of these changes can lead to serious damage to the body of the landfill (landslides, sinkholes) and, consequently, threaten the [...] Read more.
Monitoring reclaimed landfills is essential for ensuring their stability and monitoring the regularity of facility settlement. Insufficient recognition of the magnitude and directions of these changes can lead to serious damage to the body of the landfill (landslides, sinkholes) and, consequently, threaten the environment and the life and health of people near landfills. This study focuses on using UAV photogrammetry to monitor geometric changes in reclaimed landfills. This approach highlights the advantages of UAVs in expanding the monitoring and providing precise information critical for decision-making in the reclamation process. This study presents the result of annual photogrammetry measurements at the Słabomierz–Krzyżówka reclaimed landfill, located in the central part of Poland. The Multiscale Model to Model Cloud Comparison (M3C2) algorithm was used to determine deformation at the landfill. The results were simultaneously compared with the landfill’s reference (angular–linear) measurements. The mean vertical displacement error determined by the photogrammetric method was ±2.3 cm. The results showed that, with an appropriate measurement methodology, it is possible to decide on changes in geometry reliably. The collected 3D data also gives the possibility to improve the decision-making process related to repairing damage or determining the reclamation direction of the landfill, as well as preparing further development plans. Full article
Show Figures

Figure 1

28 pages, 27581 KiB  
Article
Analysis of Urbanization-Induced Land Subsidence in the City of Recife (Brazil) Using Persistent Scatterer SAR Interferometry
by Wendson de Oliveira Souza, Luis Gustavo de Moura Reis, Jaime Joaquim da Silva Pereira Cabral, Antonio Miguel Ruiz-Armenteros, Roberto Quental Coutinho, Admilson da Penha Pacheco and Wilson Ramos Aragão Junior
Remote Sens. 2024, 16(14), 2592; https://doi.org/10.3390/rs16142592 - 15 Jul 2024
Cited by 2 | Viewed by 1961
Abstract
The article addresses anthropogenic and geological conditions related to the development of soil subsidence in the western zone of Recife (Brazil). Over the past 50 years, human activity has intensified in areas previously affected by soft soils (clay, silt, and sandstone) resulting in [...] Read more.
The article addresses anthropogenic and geological conditions related to the development of soil subsidence in the western zone of Recife (Brazil). Over the past 50 years, human activity has intensified in areas previously affected by soft soils (clay, silt, and sandstone) resulting in subsidence due to additional loads (landfills and constructions). The duration of the settlement process can be significantly influenced by the specific characteristics of the soil composition and geological conditions of the location. This work presents, for the first time, accurate InSAR time series maps that describe the spatial pattern and temporal evolution of the settlement, as well as the correlation with the geological profile, and validation with Global Navigation Satellite System (GNSS) data. Persistent Scatterer Interferometry (PS-InSAR) was employed in the analysis of Single Look Complex (SLC) images generated by 100 ascending COSMO-SkyMed (CSK) and 65 PAZ (32 ascending, and 33 descending) from the X-band, along with 135 descending Sentinel-1 (S1) acquisitions from the C-band. These data were acquired over the period from 2011 to 2023. The occurrence of subsidence was identified in several locations within the western region, with the most significant displacement rates observed in the northern, central, and southern areas. In the northern region, the displacement rates were estimated to be approximately −20 mm/year, with the Várzea and Caxangá neighborhoods exhibiting the highest rates. In the central region, the displacement rates were estimated to be approximately −15 mm/year, with the Engenho do Meio, Cordeiro, Torrões, and San Martin neighborhoods exhibiting the highest rates. Finally, in the southern region, the displacement rates were estimated to be up to −25 mm/year, with the Caçote, Ibura, and Ipsep neighborhoods exhibiting the highest rates. Additionally, east–west movements were observed, with velocities reaching up to −7 mm/year toward the west. These movements are related to the lowering of the land. The study highlights that anthropogenic effects in the western zone of Recife contribute to the region’s vulnerability to soil subsidence. Full article
Show Figures

Figure 1

29 pages, 3883 KiB  
Article
Lifecycle Assessment of Strategies for Decarbonising Wind Blade Recycling toward Net Zero 2050
by Kyle Pender, Filippo Romoli and Jonathan Fuller
Energies 2024, 17(12), 3008; https://doi.org/10.3390/en17123008 - 18 Jun 2024
Cited by 5 | Viewed by 1876
Abstract
The wind energy sector faces a persistent challenge in developing sustainable solutions for decommissioned Wind Turbine Blades (WTB). This study utilises Lifecycle Assessment (LCA) to evaluate the gate-to-gate carbon footprint of high-profile disposal and recycling methods, aiming to determine optimal strategies for WTB [...] Read more.
The wind energy sector faces a persistent challenge in developing sustainable solutions for decommissioned Wind Turbine Blades (WTB). This study utilises Lifecycle Assessment (LCA) to evaluate the gate-to-gate carbon footprint of high-profile disposal and recycling methods, aiming to determine optimal strategies for WTB waste treatment in the UK. While this article analyses the UK as a case study, the findings are applicable to, and intended to inform, recycling strategies for WTB waste globally. Long-term sustainability depends heavily on factors like evolving energy grids and changing WTB waste compositions and these must be considered for robust analysis and development strategy recommendations. In the short to medium term, mechanical recycling of mixed WTB waste is sufficient to minimise Global Warming Potential (GWP) due to the scarcity of carbon fibre in WTB waste streams. Beyond 2040, carbon fibre recycling becomes crucial to reduce GWP. The study emphasises the importance of matching WTB sub-structure material compositions with preferred waste treatment options for the lowest overall impact. Future development should focus on the extraction of carbon fibre reinforced polymer (CFRP) structures in WTB waste streams, commercialising large-scale CFRP structure recycling technologies, establishing supply chains, and validating market routes for secondary carbon fibre products. In parallel, scaling up low-impact options, like mechanical recycling, is vital to minimise WTB waste landfilling. Developing viable applications and cost-effective market routes for mechanical recyclates is necessary to displace virgin glass fibres, while optimising upstream recycling processes based on product requirements. Full article
(This article belongs to the Special Issue Life Cycle Assessment (LCA) of Renewable Energy Technologies)
Show Figures

Figure 1

25 pages, 13266 KiB  
Article
A New Calculation Method of Force and Displacement of Retaining Wall and Slope
by Yingfa Lu, Wenqing Sun, Hao Yang, Junjie Jiang and Lier Lu
Appl. Sci. 2023, 13(9), 5806; https://doi.org/10.3390/app13095806 - 8 May 2023
Cited by 5 | Viewed by 2214
Abstract
On the basis of the force and safety factor analysis of traditional retaining walls, a new analytical method of force and displacement of the slope is suggested, the numerical theoretical solution of the stress distribution of the sliding body can be obtained under [...] Read more.
On the basis of the force and safety factor analysis of traditional retaining walls, a new analytical method of force and displacement of the slope is suggested, the numerical theoretical solution of the stress distribution of the sliding body can be obtained under the conditions, which the stresses distribution are satisfied with the differential equilibrium equations, the boundary conditions, the compatibility equation and the macroscopic equilibrium equations. The interface stresses between the sliding body and the retaining wall is continuous, and the theoretical solution of retaining wall stress distributions can be obtained, while the stress differential equilibrium equation, the compatibility equation, macroscopic force, and moment balance equations are satisfied. The strain and displacement solutions can be obtained by using Duncan Chang and Hooke constitutive equations for the slope and the retaining wall, respectively. The transfer station of landfill in the Guandukou Town of Badong County is taken as an example, the results of the sliding body and retaining wall analysis show: The stress and strain solutions of a slope and a retaining wall can be obtained by the proposed method. The anti-slip force of the retaining wall calculated by the method in this paper contains the positive pressure and shear force along the contact surface and varies with the deformation of the slope, in addition, the numerical theoretical solution of the retaining wall shows that the retaining wall shape and material can be optimized according to the calculation results. It is feasible for the proposed analysis method of slope with retaining wall design to be run many years. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

13 pages, 4745 KiB  
Article
Effect of Dry and Wet Cycles on the Strength Characteristics of Biochar–Clay Mixture
by Deyang Liu, Wenjing Sun, Yi Kong and Shuyun Zhang
Processes 2023, 11(3), 970; https://doi.org/10.3390/pr11030970 - 22 Mar 2023
Cited by 7 | Viewed by 3051
Abstract
Biochar is an economical and environmentally friendly “green material” with potential benefits in greenhouse gas emission reduction, soil performance improvement, and environmental restoration. Mixing biochar with clay and using it as a landfill cover can effectively reduce the escape of greenhouse gases into [...] Read more.
Biochar is an economical and environmentally friendly “green material” with potential benefits in greenhouse gas emission reduction, soil performance improvement, and environmental restoration. Mixing biochar with clay and using it as a landfill cover can effectively reduce the escape of greenhouse gases into the air, which is important for environmental protection. It is suggested that biochar should be mixed with clay and used as a landfill covering layer. In this study, the shear strength was obtained by direct shear test, and the shear strength characteristics of biochar–clay mixture under the influence of different dry and wet cycles, biochar contents, and moisture conditions were studied. The results show that the shear strength of the biochar–clay mixture in the saturated state decreases with increasing wet and dry cycles, with shear strength decreases ranging from 6% to 19%. The cohesion and internal friction angles of the clays and mixtures show a decreasing trend under wet and dry cycles, with the cohesion and internal friction angles decreasing in the range of 2% to 16%. The shear stress–shear displacement curve for the biochar–clay mixture in the saturated state shows strain hardening after wet and dry cycles; the curve in the dry state shows strain softening with a distinct peak and a platform at the front end of the curve. The shear strength of clay in a dry state is larger than that of biochar–clay mixture and always larger than that of clay in a saturated state. The shear strength difference of the mixture between dry and saturated states is obviously smaller than that of pure clay. This paper, therefore, provides theoretical guidance for the application of biochar–clay mixtures to landfill covers. Full article
Show Figures

Graphical abstract

16 pages, 3779 KiB  
Article
Impact of Landfill Gas Exposure on Vegetation in Engineered Landfill Biocover Systems Implemented to Minimize Fugitive Methane Emissions from Landfills
by Dinu S. Attalage, J. Patrick A. Hettiaratchi, Angus Chu, Dinesh Pokhrel and Poornima A. Jayasinghe
Int. J. Environ. Res. Public Health 2023, 20(5), 4448; https://doi.org/10.3390/ijerph20054448 - 2 Mar 2023
Cited by 2 | Viewed by 2015
Abstract
Engineered landfill biocovers (LBCs) minimize the escape of methane into the atmosphere through biological oxidation. Vegetation plays a crucial role in LBCs and can suffer from hypoxia caused by the displacement of root-zone oxygen due to landfill gas and competition for oxygen with [...] Read more.
Engineered landfill biocovers (LBCs) minimize the escape of methane into the atmosphere through biological oxidation. Vegetation plays a crucial role in LBCs and can suffer from hypoxia caused by the displacement of root-zone oxygen due to landfill gas and competition for oxygen with methanotrophic bacteria. To investigate the impact of methane gas on vegetation growth, we conducted an outdoor experiment using eight vegetated flow-through columns filled with a 45 cm mixture of 70% topsoil and 30% compost, planted with three types of vegetation: native grass blend, Japanese millet, and alfalfa. The experiment included three control columns and five columns exposed to methane, as loading rates gradually increased from 75 to 845 gCH4/m2/d over a period of 65 days. At the highest flux, we observed a reduction of 51%, 31%, and 19% in plant height, and 35%, 25%, and 17% in root length in native grass, Japanese millet, and alfalfa, respectively. The column gas profiles indicated that oxygen concentrations were below the levels required for healthy plant growth, which explains the stunted growth observed in the plants used in this experiment. Overall, the experimental results demonstrate that methane gas has a significant impact on the growth of vegetation used in LBCs. Full article
(This article belongs to the Special Issue Sustainable Waste Management to Mitigate Global Climate Change)
Show Figures

Figure 1

16 pages, 7627 KiB  
Article
Surface Monitoring of an MSW Landfill Based on Linear and Angular Measurements, TLS, and LIDAR UAV
by Grzegorz Pasternak, Janina Zaczek-Peplinska, Klaudia Pasternak, Jacek Jóźwiak, Mariusz Pasik, Eugeniusz Koda and Magdalena Daria Vaverková
Sensors 2023, 23(4), 1847; https://doi.org/10.3390/s23041847 - 7 Feb 2023
Cited by 18 | Viewed by 3265
Abstract
Surface monitoring of landfills is crucial not only during their operation but also for later land restoration and development. Measurements concern environmental factors, such as leachate, migration of pollutants to water, biogas, and atmospheric emissions, and geotechnical factors, such as stability and subsidence. [...] Read more.
Surface monitoring of landfills is crucial not only during their operation but also for later land restoration and development. Measurements concern environmental factors, such as leachate, migration of pollutants to water, biogas, and atmospheric emissions, and geotechnical factors, such as stability and subsidence. Landfill subsidence can be measured using modern surveying techniques. Modern measurement methods for landfill body displacement monitoring and their control after restoration and adaptation as recreational areas include terrestrial laser scanning (TLS), and scanning and low-altitude photogrammetric measurements from an unmanned aerial vehicle (UAV). The acquired measurement data in the form of 3D point clouds should be referenced to the local control network to enable a comprehensive analysis of data acquired using various techniques, including geotechnical sensors such as benchmarks, piezometers, and inclinometers. This study discusses the need for surface monitoring of municipal solid waste (MSW) landfills. A properly 3-D mapped landfill mass is the basis for ensuring the geotechnical safety of the restored landfill. Based on archival data and current measurements of the Radiowo landfill (Poland), this study compares the advantages and limitations of the following measurement techniques: linear and angular measurements, satellite measurements, TLS, and UAV scanning and photogrammetry, considering specific conditions of the location and vegetation of the landfill. Solutions for long-term monitoring were proposed, considering the cost and time resolution necessary for creating a differential model of landfill geometry changes. Full article
Show Figures

Figure 1

19 pages, 3449 KiB  
Article
Economic Conditions to Circularize Clinical Plastics
by Jhuma Sadhukhan and Kartik Sekar
Energies 2022, 15(23), 8974; https://doi.org/10.3390/en15238974 - 27 Nov 2022
Cited by 9 | Viewed by 3539
Abstract
Over 5.5 million tons of plastic waste are generated globally from the research sectors. A university laboratory, e.g., pathology, can generate 250 tons of clinical plastic waste annually. The UK National Health Service (NHS) generates 133 kilotons (kt) of clinical plastic waste annually. [...] Read more.
Over 5.5 million tons of plastic waste are generated globally from the research sectors. A university laboratory, e.g., pathology, can generate 250 tons of clinical plastic waste annually. The UK National Health Service (NHS) generates 133 kilotons (kt) of clinical plastic waste annually. Healthcare facilities in the US generate 1.7 million tons of clinical plastic waste annually. In addition, 95% of the clinical plastics are single-use plastics derived from fossil resources, i.e., crude oils. These single-use clinical plastic wastes are incinerated, contributing to global warming, or go to the landfill, contributing to resource depletion. Plastic leakage is a major threat to the environment. This linear plastics economy model, take-make-dispose, must be replaced by a circular plastics economy, i.e., sort plastic wastes, wash, decontaminate, recover materials, blend with bio-based compounds as necessary and circulate recyclate plastics, for holistic systemic sustainability. While there are multi-faceted environmental drivers for a circular plastics economy, there are many uncertainties in the economic attributes, electricity price, labor cost and chemical cost being the primary ones influencing the cost of production of secondary or recyclate plastics, requiring government and policy support, such as a gate fee on plastic waste by the generators to the recyclers. An essential macroeconomic condition for techno-economically (or micro-economically) feasible plastic waste recycling is low oil and gas prices that influence the recyclate plastics and electricity prices. It is essential to de-fossilize the economy by decoupling renewable electricity generation from natural gas consumption and fossil-independent biopolymer productions displacing fossil-derived plastics to stimulate the circular economy. This study shows a comprehensive and robust technoeconomic analysis of mechanical recycling of clinical plastic wastes into secondary plastics recovery. Full article
Show Figures

Figure 1

8 pages, 1622 KiB  
Article
Green Methane as a Future Fuel for Light-Duty Vehicles
by Jaewon Byun and Jeehoon Han
Fermentation 2022, 8(12), 680; https://doi.org/10.3390/fermentation8120680 - 27 Nov 2022
Cited by 2 | Viewed by 2466
Abstract
Food waste (FW) has traditionally been disposed by incineration or landfilling; however, it can be converted to green methane (GM) via anaerobic digestion, and GM can be used as fuel for light-duty natural gas vehicles (LDNGVs). A lifecycle assessment (LCA) of FW-based GM [...] Read more.
Food waste (FW) has traditionally been disposed by incineration or landfilling; however, it can be converted to green methane (GM) via anaerobic digestion, and GM can be used as fuel for light-duty natural gas vehicles (LDNGVs). A lifecycle assessment (LCA) of FW-based GM production and LDNGV operation in China, a new scenario, was performed. The LCA results were compared with those for the conventional FW treatment, where a “well-to-wheel” system boundary including FW collection, GM production from FW, and vehicle manufacturing, operation, and disposal was defined. The LCA results showed that the global warming impacts of the new FW scenario are 44.3% lower than those of the conventional option. The fine particulate matter formation impact of the new FW scenario was dominated by the displacement effect of electricity supply to anaerobic digestion, followed by CO2 adsorption by the primary source. The sensitivity analysis showed that hydroelectric power as the best primary source for electricity supply could substantially reduce both global warming and FRS in the new scenario. In the short term, the proposed FW scenario could be a feasible option for achieving sustainable society by minimizing environmental impacts of FW treatment. Full article
(This article belongs to the Collection Food Waste Valorization)
Show Figures

Figure 1

17 pages, 6372 KiB  
Article
Effect of Temperature on Internal Shear Strength Mechanism of Needle-Punched GCL
by Yang Yang, Jianyong Shi and Xuede Qian
Sustainability 2021, 13(8), 4585; https://doi.org/10.3390/su13084585 - 20 Apr 2021
Cited by 7 | Viewed by 3010
Abstract
Needle-punched geosynthetic clay liner (NPGCL) has been widely used in landfills. The internal strength of the GCL changes with temperature variation, which affects its application in landfills. A large-scale temperature-controlled direct shear apparatus was developed to study the internal shear strength characteristics of [...] Read more.
Needle-punched geosynthetic clay liner (NPGCL) has been widely used in landfills. The internal strength of the GCL changes with temperature variation, which affects its application in landfills. A large-scale temperature-controlled direct shear apparatus was developed to study the internal shear strength characteristics of GCL affected by temperature. The internal strength of the GCL was dependent on the bentonite, the fibers, and the interaction between the fibers and the bentonite. The influence of temperature on the internal strength of the GCL was mainly reflected in the displacement at peak strength. However, the peak strength was basically unchanged. The strength of the bentonite and the fibers-reinforced bentonite increased when the temperature increased. The tensile strength of needle-punched fibers decreased with increasing temperature. The peak strength displacement of the fibers-reinforced bentonite decreased with increasing temperature. Full article
Show Figures

Figure 1

18 pages, 5711 KiB  
Article
Analytical Modelling of MSW Landfill Surface Displacement Based on GNSS Monitoring
by Dana Adamcová, Stanislav Bartoň, Piotr Osinski, Grzegorz Pasternak, Anna Podlasek, Magdalena Daria Vaverková and Eugeniusz Koda
Sensors 2020, 20(21), 5998; https://doi.org/10.3390/s20215998 - 22 Oct 2020
Cited by 11 | Viewed by 3463
Abstract
Displacements of landfills play an important role in the reclamation process and geotechnical safety improvement of such sites. Landfill settlements are defined as a vertical displacement of waste body due to compression, degradable nature of the waste, and creep phenomenon of the waste [...] Read more.
Displacements of landfills play an important role in the reclamation process and geotechnical safety improvement of such sites. Landfill settlements are defined as a vertical displacement of waste body due to compression, degradable nature of the waste, and creep phenomenon of the waste particles. Waste composition is more diverse than natural soil. Thus, it has to be properly placed and compacted since the landfill body will continuously settle down. Several models of the landfill displacement estimation have already been developed. The aim of the present study was: (i) to review the methods of landfill settlements computation and (ii) to propose the model allowing landfill body displacements simulation based on monitoring datasets applying a Global Navigation Satellite Systems (GNSS) measurement. The new model employs Gauss-Newton iteration and Runge-Kutta methods to estimate landfill surface displacements. The objectives were to analyse and mathematically describe the landfill body displacements. The GNSS geodetic survey and computations allowed concluding that the landfill body has been transformed over the years. The results revealed that the curves of waste displacement are in agreement with the measured total displacement of the landfill, and all curves corresponding to waste displacement are perpendicular to the active edge of the landfill. In the period of a maximum of 4.5 years after the waste deposition with a layer of up to 16.2 m thickness, the phenomenon of expansion was observed, which then disappears, and more settlement occurs due to the gravity of upper layers. The analysed landfill as a whole does not experience significant displacements. Neither of the slope failures are observed, even for large inclination. Full article
(This article belongs to the Special Issue Sensors and Measurements in Geotechnical Engineering)
Show Figures

Graphical abstract

Back to TopTop