Detection and Mitigation of RPL Rank and Version Number Attacks in the Internet of Things: SRPL-RP
Abstract
:1. Introduction
1.1. RPL Routing Protocol Overview
1.2. RPL Security
1.3. Research Contribution
- several security defects and shortcomings regarding network performance and accuracy;
- multiple attacks in RPL networks are not supported;
- multiple RPL network topologies are not supported;
- they do not detect and mitigate the effects of both attacks in the RPL network; and
- they do not isolate the malicious nodes from legitimate nodes in the RPL network.
- the addition of a timestamp threshold to verify the legitimacy of the sender nodes;
- a monitoring table that captures all information of the nodes in the RPL network topology;
- detection of both rank attack and version number attacks based on a comparison of ranks strategy;
- mitigation of the effects of both rank attacks and version number attacks by updating a monitoring table;
- isolation of both rank attacks and version number attacks by using a blacklist table to prevent malicious nodes from joining the RPL network and alerting other nodes to skip them; and
- the provision of multiple types of attacks (rank and version number attacks) in RPL networks, and support for different types of RPL network topologies.
1.4. Research Paper Organization
2. Literature Review
2.1. RPL Rank Attack
RPL Rank Attack Countermeasures Classification
- 1
- Classification-Based RPL Rank Attack Modification Techniques
- 2
- Classification-Based IDS
2.2. RPL Version Number Attack
RPL Version Number Attack Countermeasures Classification
- 1
- Classification Based RPL Version Number Attack Modification Techniques
- 2
- Classification-Based IDS
3. The Proposed Protocol
3.1. SRPL-RP Proposal
- A timestamp threshold to verify the legitimacy of the sender nodes.
- A monitoring table during the construction of DODAG that contains information regarding the nodes.
- Detection of rank attacks and version number attacks.
- Mitigation of the effects of rank attacks and version number attacks.
- Isolation of rank and version number attacks.
3.2. Attacker Model
3.3. SRPL-RP Description
3.4. SRPL-RP Implementation
3.4.1. Rank and Version Number Attacks Detection
3.4.2. Rank and Version Number Attacks Mitigation
3.4.3. Rank and Version Number Attacks Isolation
4. Simulation and Results Analysis
4.1. Simulation Setup
4.2. Results Analysis
4.2.1. The Network Performance Results and Comparison
Network Performance Results
4.2.2. Accuracy Results
5. Discussion
5.1. Network Performance Discussion
5.2. Accuracy Discussion
6. Conclusions
7. Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Term | Detail |
AR | Accuracy Rate |
CC | Consistency Check |
D2D | Device-to-Device |
DAO | Destination Advertisement Object |
DAO-ACK | DAO Acknowledgement |
DIO | DODAG Information Object |
DIS | DODAG Information Solicitation |
DODAG | Destination Oriented Directed Acyclic Graph |
ECC | Elliptic Curve Cryptography |
FN | False Negative |
FP | False Positive |
IDS | Intrusion Detection Systems |
IoT | Internet of Things |
NCR | Node Current Rank |
NPR | Node Parent Rank |
NPVR | Node Previous Rank |
Version Number | the version number of DODAG root node used for revalidation |
OF | Objective Functions |
PDR | Packet Delivery Ratio |
PST | Parent Switching Threshold |
Rank | Position of the node with respect to the sink |
RPL | Routing Protocol for Low Power and Lossy Networks |
SRPL-RP | Secure RPL Routing Protocol |
TN | True Negative |
TP | True Positive |
UDGM | Unit Disk Graph Medium |
Appendix A
Algorithm A1. Evaluation of Node Current’s Rank and Node Sibling’s Rank | |
1: | Begin |
2: | input: node_id |
3: | input: min_sibling_rank |
4: | input: node_current_rank |
5: | input: parent_threshold_divisor |
6: | input: min_pst |
7: | input: threshold |
8: | set min_pst = (min_sibling_rank – parent_threshold_divisor) |
9: | if node_current_rank < min_pst then |
10: | set threshold[node_id] = 5 |
11: | else |
12: | set threshold[node_id] = 4 |
13: | End if |
14: | End |
Algorithm A2. Evaluation of Node Current’s Rank and Node Child’s Rank | |
1: | Begin |
2: | input: node_id |
3: | input: min_child_rank |
4: | input: node_current_rank |
5: | input: parent_threshold_divisor |
6: | input: minch_pst |
7: | input: threshold |
8: | set minch_pst = (min_child_rank + parent_threshold_divisor) |
9: | if node_current_rank <= minch_pst then |
10: | set threshold[node_id] = 7 |
11: | else |
12: | set threshold[node_id] = 6 |
13: | End if |
14: | End |
Algorithm A3. Checking the Condition of the Initial Default Version Number | |
1: | Begin |
2: | input: version |
3: | input: neighbor_1_current_rank |
4: | input: neighbor_1_previous_rank |
5: | input: neighbor_1_version |
6: | input: number |
7: | input: neighbor_1 |
8: | input: neighbor_1_id |
9: | input: neighbor |
10: | input: neighbor_table_head |
11: | input: neighbor_table_next |
12: | input: n |
13: | input: m |
14: | input: p |
15: | if version != 240 //DEFAULT VERSION(DODAG) = 240 |
16: | for neighbor_1 = neighbor_table_head; neighbor_1 != null; neighbor_1 = neighbor_table_next then |
17: | set number ++ |
18: | set neighbor_1_id = address |
19: | set neighbor[number] = neighbor_1_id |
20: | set n[neighbor[number] = neighbor_1_current_rank |
21: | set m[neighbor[number] = neighbor_1_previous_rank |
22: | set p[neighbor[number] = neighbor_1_version |
23: | End for |
24: | End if |
25: | End |
Algorithm A4. Version Number Attack Mitigation | |
1: | Begin |
2: | input: version_count |
3: | input: divisor |
4: | input: version |
5: | input: ver |
6: | input: j |
7: | input: threshold_table |
8: | input: node_id |
9: | if version_count >= divisor then |
10: | set version = ver[j] //updating version number |
11: | set threshold_table[node_id] = 2 |
12: | else |
13: | set threshod_table[node_id] = 3 |
14: | End if |
15: | End |
Algorithm A5. Rank Attack Mitigation | |
1: | input: preferred_parent1 |
2: | input: preferred_parent2 |
3: | input: preferred_parent1_status |
4: | input: preferred_parent2_status |
5: | input: parent1_metric |
6: | input: parent2_metric |
7: | input: p1 |
8: | input: p2 |
9: | if preferred_parent1 == 1 || preferred_parent2 == 1 then |
10: | if parent1_metric < parent2_metric then |
11: | set p1 |
12: | else |
13: | set p2 |
14: | End if |
15: | else |
16: | if preferred_parent1_status != 1 && preferred_parent2_status != 1 then |
17: | if parent1_metric < parent2_metric then |
18: | set p1 |
19: | else |
20 | set p2 |
21 | End if |
22 | End if |
23 | End if |
24 | End |
Algorithm A6. Attacks Isolation | |
1: | input: node_id |
2: | input: attack_status |
3: | input: alert |
4: | if attack_status[node_id] == 0 then |
5: | set alert: (legitimate node, node_id) |
6: | else |
7: | if attack_status[node_id] == 1 then |
8: | set alert: (malicious node, node_id) |
9 | End if |
10: | End if |
11: | End |
References
- Almusaylim, Z.A.; Zaman, N. A review on smart home present state and challenges: Linked to context-awareness internet of things (IoT). Wirel. Netw. 2019, 25, 3193–3204. [Google Scholar] [CrossRef]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Almusaylim, Z.A.; Zaman, N.; Jung, L.T. Proposing A Data Privacy Aware Protocol for Roadside Accident Video Reporting Service Using 5G In Vehicular Cloud Networks Environment. In Proceedings of the 2018 4th International Conference on Computer and Information Sciences (ICCOINS), Kuala Lumpur, Malaysia, 13–14 August 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Almusaylim, Z.A.; Jhanjhi, N. Comprehensive Review: Privacy Protection of User in Location-Aware Services of Mobile Cloud Computing. Wirel. Pers. Commun. 2019, 1–24. [Google Scholar] [CrossRef]
- Ma, G.; Li, X.; Pei, Q.; Li, Z. A Security Routing Protocol for Internet of Things Based on RPL. In Proceedings of the 2017 International Conference on Networking and Network Applications (NaNA), Kathmandu, Nepal, 16–19 October 2017; pp. 209–213. [Google Scholar] [CrossRef]
- Silva, B.N.; Khan, M.; Han, K. Internet of Things: A Comprehensive Review of Enabling Technologies, Architecture, and Challenges. IETE Tech. Rev. 2018, 35, 205–220. [Google Scholar] [CrossRef]
- Humayun, M.; Niazi, M.; Zaman, N.; Alshayeb, M.; Mahmood, S. Cyber Security Threats and Vulnerabilities: A Systematic Mapping Study. Arab. J. Sci. Eng. 2020. [Google Scholar] [CrossRef]
- Airehrour, D.; Gutierrez, J.; Ray, S.K. Secure routing for internet of things: A survey. J. Netw. Comput. Appl. 2016, 66, 198–213. [Google Scholar] [CrossRef]
- Kharrufa, H.; Al-Kashoash, H.A.A.; Kemp, A.H. RPL-Based Routing Protocols in IoT Applications: A Review. IEEE Sens. J. 2019, 19, 5952–5967. [Google Scholar] [CrossRef] [Green Version]
- Le, A.; Loo, J.; Lasebae, A.; Vinel, A.; Chen, Y.; Chai, M. The Impact of Rank Attack on Network Topology of Routing Protocol for Low-Power and Lossy Networks. IEEE Sens. J. 2013, 13, 3685–3692. [Google Scholar] [CrossRef]
- Verma, A.; Ranga, V. Security of RPL based 6LoWPAN Networks in the Internet of Things: A Review. IEEE Sens. J. 2020, 20, 5666–5690. [Google Scholar] [CrossRef]
- Almusaylim, Z.A.; Alhumam, A.; Zaman, N. Proposing a Secure RPL based Internet of Things Routing Protocol: A Review. Ad Hoc Netw. 2020, 101, 102096. [Google Scholar] [CrossRef]
- Shafique, U.; Khan, A.; Rehman, A.; Bashir, F.; Alam, M. Detection of rank attack in routing protocol for Low Power and Lossy Networks. Ann. Telecommun. 2018, 73, 429–438. [Google Scholar] [CrossRef]
- Aris, A.; Örs Yalçın, S.B.; Oktug, S. New lightweight mitigation techniques for RPL version number attacks. Ad Hoc Netw. 2019, 85, 81–91. [Google Scholar] [CrossRef]
- Karthik, V.K.; Pushpalatha, M. Addressing Attacks and Security Mechanism in the RPL based IOT. Int. J. Comput. Sci. Eng. Commun. 2017, 5, 1715–1721. [Google Scholar]
- Mangelkar, S.; Dhage, S.N.; Nimkar, A.V. A comparative study on RPL attacks and security solutions. In Proceedings of the 2017 International Conference on Intelligent Computing and Control (I2C2), Coimbatore, India, 23–24 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Raoof, A.; Matrawy, A.; Lung, C.-H. Routing Attacks and Mitigation Methods for RPL-Based Internet of Things. IEEE Commun. Surv. Tutor. 2019, 21, 1582–1606. [Google Scholar] [CrossRef]
- Glissa, G.; Rachedi, A.; Meddeb, A. A Secure Routing Protocol Based on RPL for Internet of Things. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Airehrour, D.; Gutiérrez, J.A.; Ray, S.K. SecTrust-RPL: A secure trust-aware RPL routing protocol for Internet of Things. Future Gener. Comput. Syst. 2019, 93, 860–876. [Google Scholar] [CrossRef]
- Le, A.; Loo, J.; Luo, Y.; Lasebae, A. Specification-based IDS for securing RPL from topology attacks. In Proceedings of the 2011 IFIP Wireless Days (WD), Niagara Falls, ON, Canada, 10–12 October 2011; pp. 1–3. [Google Scholar] [CrossRef]
- Iuchi, K.; Matsunaga, T.; Toyoda, K.; Sasase, I. Secure parent node selection scheme in route construction to exclude attacking nodes from RPL network. In Proceedings of the 2015 21st Asia-Pacific Conference on Communications (APCC), Kyoto, Japan, 14–16 October 2015; pp. 299–303. [Google Scholar] [CrossRef]
- Althubaity, A.; Ji, H.; Gong, T.; Nixon, M.; Ammar, R.; Han, S. ARM: A hybrid specification-based intrusion detection system for rank attacks in 6TiSCH networks. In Proceedings of the 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus, 12–15 September 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Patel, H.; Patel, H.; Shrimali, B. A Survey on Trust-based Intrusion Detection for Version Number Attack on RPL. Int. J. Comput. Sci. Eng. 2018, 6, 449–454. [Google Scholar] [CrossRef]
- Kamgueu, P.O.; Nataf, E.; Ndie, T.D. Survey on RPL enhancements: A focus on topology, security and mobility. Comput. Commun. 2018, 120, 10–21. [Google Scholar] [CrossRef]
- Aris, A.; Oktug, S.F.; Yalcin, S.B.O. RPL version number attacks: In-depth study. In Proceedings of the NOMS 2016—2016 IEEE/IFIP Network Operations and Management Symposium, Istanbul, Turkey, 25–29 April 2016; pp. 776–779. [Google Scholar] [CrossRef]
- Dvir, A.; Holczer, T.; Buttyan, L. VeRA—Version Number and Rank Authentication in RPL. In Proceedings of the 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems, Valencia, Spain, 17–21 October 2011; pp. 709–714. [Google Scholar] [CrossRef] [Green Version]
- Perrey, H.; Landsmann, M.; Ugus, O.; Wählisch, M.; Schmidt, T.C. TRAIL: Topology Authentication in RPL. In EWSN ’16 Proceedings of the 2016 International Conference on Embedded Wireless Systems and Networks; Springer: Berlin/Heidelberg, Germany, 2016; pp. 59–64. [Google Scholar]
- FAhmed, F.; Ko, Y.-B. A Distributed and Cooperative Verification Mechanism to Defend against DODAG Version Number Attack in RPL. In PECCS 2016, Proceedings of the 6th International Joint Conference on Pervasive and Embedded Computing and Communication Systems, Lisbon, Portugal, 25–27 July 2016; SciTePress: Setúbal, Portugal, 2016; pp. 55–62. [Google Scholar] [CrossRef]
- Nikravan, M.; Movaghar, A.; Hosseinzadeh, M. A Lightweight Defense Approach to Mitigate Version Number and Rank Attacks in Low-Power and Lossy Networks. Wirel. Pers. Commun. 2018, 99, 1035–1059. [Google Scholar] [CrossRef]
- Mayzaud, A.; Badonnel, R.; Chrisment, I. A Distributed Monitoring Strategy for Detecting Version Number Attacks in RPL-Based Networks. IEEE Trans. Netw. Serv. Manag. 2017, 14, 472–486. [Google Scholar] [CrossRef]
- PThulasiraman, P.; Wang, Y. A Lightweight Trust-Based Security Architecture for RPL in Mobile IoT Networks. In Proceedings of the 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 11–14 January 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Tandon, A.; Srivastava, P. Trust-based Enhanced Secure Routing against Rank and Sybil Attacks in IoT. In Proceedings of the 2019 Twelfth International Conference on Contemporary Computing (IC3), Noida, India, 8–10 August 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Neerugatti, V.; Reddy, A.R.M. Machine Learning Based Technique for Detection of Rank Attack in RPL based Internet of Things Networks. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 5. [Google Scholar]
- Hankerson, D.; Vanstone, S.; Menezes, A. Guide to Elliptic Curve Cryptography; Springer: New York, NY, USA, 2004. [Google Scholar]
- Murali, S.; Jamalipour, A. A Lightweight Intrusion Detection for Sybil Attack under Mobile RPL in the Internet of Things. IEEE Internet Things J. 2020, 7, 379–388. [Google Scholar] [CrossRef]
- Dunkels, A. Contiki: The Open Source OS for the Internet of Things. 2003. Available online: http://www.contikios.org/index.html (accessed on 1 September 2019).
- Maria, A.; Nazurl, I.; Zaman, N. A Lightweight and Secure Authentication Scheme for IoT Based E-Health Application. IJCSNS Int. J. Comput. Sci. Netw. Secur. 2019, 19, 107–120. [Google Scholar]
Work/Feature | Verification of Nodes | Comparison of Rank Strategy (Detection) | Updating Version Number (Mitigation) | Monitoring Table (Mitigation) | Blacklist Table (Isolation) |
---|---|---|---|---|---|
Our work | Yes | Yes | Yes | Yes | Yes |
Work [13] | No | Yes | No | No | No |
Work [14] | No | No | Yes | No | No |
Parameter | Value |
---|---|
Simulator | Cooja 3.0 |
Node Type | Wismote |
Number of Nodes | 20 with 1 root node, 14 normal nodes |
Number of Malicious Nodes | 5: 4 rank attacker nodes, 1 version number attacker node |
Routing Protocol | RPL Protocol |
Area | 100 m * 100 m |
Simulation Time | 60 min |
Transmission Range | 50 m |
Interference Range | 100 m |
Packet Send Interval | 60 s |
Data Packet Size | 127 Bytes |
Topology | Grid-Center, Grid Random, Random |
Protocol/Time | SRPL-RP | RPL + Attacks | SRPL-RP (Rank) | SBIDS [13] | SRPL-RP (Version Number Attack) | RRPL + Shield [14] |
---|---|---|---|---|---|---|
Convergence Time | 89.47% | 89.19% | 89.47% | 81.58% | 89.47% | 89.47% |
Stability Stage | 93.43% | 89.47% | 91.83% | 90.02% | 92.92% | 92.74% |
Final Stage | 95.99% | 88.04% | 94.82% | 92.69% | 96.07% | 92.68% |
Protocol/Time | SRPL-RP | RPL + Attacks | SRPL-RP (Rank) | SBIDS [13] | SRPL-RP (Version Number Attack) | RRPL + Shield [14] |
---|---|---|---|---|---|---|
Convergence Time | 92.11% | 76.32% | 97.37% | 94.74% | 97.37% | 97.37% |
Stability Stage | 81.67% | 89.47% | 98.73% | 95.46 | 98.37% | 97.28% |
Final Stage | 88.12% | 89.93% | 98.48% | 95.99% | 97.95% | 96.61% |
Protocol/Time | SRPL-RP | RPL + Attacks | SRPL-RP (Rank) | SBIDS [13] | SRPL-RP (Version Number Attack) | RRPL + Shield [14] |
---|---|---|---|---|---|---|
Convergence Time | 94.74% | 57.89% | 94.74% | 94.74% | 97.37% | 92.11% |
Stability Stage | 94.74% | 43.01% | 97.46% | 94.74% | 98.37% | 96.37% |
Final Stage | 94.74% | 40.82% | 96.88% | 94.74% | 97.95% | 96.24% |
Protocol/Time | SRPL-RP | RPL + Attacks | SRPL-RP (Rank) | SBIDS [13] | SRPL-RP (Version Number Attack) | RRPL + Shield [14] |
---|---|---|---|---|---|---|
Convergence Time | 259 packets/s | 2525 packets/s | 267 packets/s | 245 packets/s | 364 packets/s | 501 packets/s |
Stability Stage | 867 packets/s | 25,008 packets/s | 782 packets/s | 1414 packets/s | 1150 packets/s | 2700 packets/s |
Final Stage | 1332 packets/s | 50,462 packets/s | 1180 packets/sond | 2015 packets/s | 1543 packets/s | 3964 packets/s |
Protocol/Time | SRPL-RP | RPL + Attacks | SRPL-RP (Rank) | SBIDS [13] | SRPL-RP (Version Number Attack) | RRPL + Shield [14] |
---|---|---|---|---|---|---|
Convergence Time | 414 packets/s | 2146 packets/s | 430 packets/s | 619 packets/s | 275 packets/s | 555 packets/s |
Stability Stage | 1107 packets/s | 25,008 packets/s | 877 packets/s | 1104 packets/s | 689 packets/s | 1570 packets/s |
Final Stage | 1468 packets/s | 41,160 packets/s | 1363 packets/s | 1479 packets/s | 1072 packets/s | 5045 packets/s |
Protocol/Time | SRPL-RP | RPL + Attacks | SRPL-RP (Rank) | SBIDS [13] | SRPL-RP (Version Number Attack) | RRPL + Shield [14] |
---|---|---|---|---|---|---|
Convergence Time | 255 packets/s | 2247 packets/s | 255 packets/s | 630 packets/s | 297 packets/s | 555 packets/s |
Stability Stage | 658 packets/s | 21,167 packets/s | 658 packets/s | 1272 packets/s | 690 packets/s | 1570 packets/s |
Final Stage | 991 packets/s | 43,481 packets/s | 991 packets/s | 1676 packets/s | 1095 packets/s | 5045 packets/s |
Protocol/Time | SRPL-RP | RPL + Attacks | SRPL-RP (Rank) | SBIDS [13] | SRPL-RP (Version Number Attack) | RRPL + Shield [14] |
---|---|---|---|---|---|---|
Convergence Time | 259 joules | 2525 joules | 2.927 joules | 3.084 joules | 2.931 joules | 3.236 joules |
Stability Stage | 867 joules | 25,008 joules | 309.474 joules | 314.903 joules | 311.687 joules | 325.414 joules |
Final Stage | 1332 joules | 50,462 joules | 1258.783 joules | 1276.162 joules | 1263.291 joules | 1287.982 joules |
Protocol/Time | SRPL-RP | RPL + Attacks | SRPL-RP (Rank) | SBIDS [13] | SRPL-RP (Version Number Attack) | RRPL + Shield [14] |
---|---|---|---|---|---|---|
Convergence Time | 414 joules | 2146 joules | 2.827 joules | 2.973 joules | 2.975 joules | 3.326 joules |
Stability Stage | 1107 joules | 25,008 joules | 303.417 joules | 309.661 joules | 309.380 joules | 333.502 joules |
Final Stage | 1468 joules | 41,160 joules | 1237.753 joules | 1255.469 joules | 1254.235 joules | 1314.884 joules |
Protocol/Time | SRPL-RP | RPL + Attacks | SRPL-RP (Rank) | SBIDS [13] | SRPL-RP (Version Number Attack) | RRPL + Shield [14] |
---|---|---|---|---|---|---|
Convergence Time | 255 joules | 2247 joules | 2.939 joules | 3.005 joules | 2.876 joules | 3.326 joules |
Stability Stage | 658 joules | 21,167 joules | 304.300 joules | 311.054 joules | 305.617 joules | 333.502 joules |
Final Stage | 991 joules | 43,481 joules | 1231.778 joules | 1259.908 joules | 1244.819 joules | 1314.884 joules |
Protocol/Time | SRPL-RP (Rank) | SBIDS [13] | SRPL-RP (Version Number Attack) | RRPL + Shield [14] |
---|---|---|---|---|
Convergence Time | 0% | 0% | 0% | 0% |
Stability Stage | 91.00% | 87.50% | 95.93% | 92.16% |
Final Stage | 93.05% | 90.40% | 97.03% | 95.70% |
Protocol/Time | SRPL-RP (Rank) | SBIDS [13] | SRPL-RP (Version Number Attack) | RRPL + Shield [14] |
---|---|---|---|---|
Convergence Time | 0% | 0% | 0% | 0% |
Stability Stage | 91.41% | 88.00% | 93.73% | 94.04% |
Final Stage | 92.88% | 88.90% | 96.14% | 92.93% |
Protocol/Time | SRPL-RP (Rank) | SBIDS [13] | SRPL-RP (Version Number Attack) | RRPL + Shield [14] |
---|---|---|---|---|
Convergence Time | 0% | 0% | 0% | 0% |
Stability Stage | 92.41% | 80.27% | 98.17% | 94.40% |
Final Stage | 92.97% | 82.34% | 98.30% | 96.68% |
Study/Parameters | Support Multiple Attacks | Support Multiple Topologies | PDR | Control Message Overhead | Average Energy Consumption | AR |
---|---|---|---|---|---|---|
SRPL [18] | Yes | No | 83% | 1550 | 4320 joules | - |
SecTrust-RPL [19] | Yes | No | 80% | - | - | - |
Specification-Based IDS [20] | Yes | No | - | - | - | - |
Secure Parent Node Selection Scheme [21] | No | No | - | - | - | - |
ARM [22] | No | No | - | - | 3560.796 joules | 60% |
SBIDS [13] | No | No | 95.99% | 1479 | 1276.162 joules | 90.40% |
VeRA [26] | Yes | No | - | - | - | - |
TRAIL [27] | No | No | - | - | - | - |
Distributed and Cooperative Verification Mechanism [28] | No | No | 97% | 1500 | - | - |
Lightweight Defense Approach [29] | Yes | No | - | - | - | - |
Lightweight Mitigation Techniques [14] | No | Yes | 92.68% | 5045 | 1314.884 joules | 92.93% |
Distributed Monitoring Strategy [30] | No | No | - | - | - | - |
Our Proposed SRPL-RP | Yes | Yes | 98.48% | 991 packets/s | 1231.778 joules | 98.30% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
A. Almusaylim, Z.; Jhanjhi, N.; Alhumam, A. Detection and Mitigation of RPL Rank and Version Number Attacks in the Internet of Things: SRPL-RP. Sensors 2020, 20, 5997. https://doi.org/10.3390/s20215997
A. Almusaylim Z, Jhanjhi N, Alhumam A. Detection and Mitigation of RPL Rank and Version Number Attacks in the Internet of Things: SRPL-RP. Sensors. 2020; 20(21):5997. https://doi.org/10.3390/s20215997
Chicago/Turabian StyleA. Almusaylim, Zahrah, NZ Jhanjhi, and Abdulaziz Alhumam. 2020. "Detection and Mitigation of RPL Rank and Version Number Attacks in the Internet of Things: SRPL-RP" Sensors 20, no. 21: 5997. https://doi.org/10.3390/s20215997
APA StyleA. Almusaylim, Z., Jhanjhi, N., & Alhumam, A. (2020). Detection and Mitigation of RPL Rank and Version Number Attacks in the Internet of Things: SRPL-RP. Sensors, 20(21), 5997. https://doi.org/10.3390/s20215997