Comparisons of Laboratory and On-Road Type-Approval Cycles with Idling Emissions. Implications for Periodical Technical Inspection (PTI) Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Vehicles
- JRC PTI study: PN emissions at low idle and WLTC of 4 different vehicles (two diesel, one GDI, one GDI with GPF), one of them (diesel) bypassing the DPF [29].
- Unpublished data: Internal data of older vehicles (non DPF diesel vehicles, or GDIs emitting >6 × 1012 p/km).
2.3. Analysis and Calculations
2.3.1. Idle Concentrations
2.3.2. Type Approval Cycle Emissions
2.3.3. Measurement Uncertainty
2.3.4. Start and Stop Function and Hybrids
3. Results
3.1. Compression Ignition Vehicles
3.2. Positive (Spark) Ignition Vehicles
3.3. Cold Idle Levels
3.4. Idle and RDE Correlation
4. Discussion
4.1. Limit of Detection of PTI Methodology
4.1.1. Compression Ignition Vehicles
4.1.2. Spark Ignition Vehicles
4.1.3. Reasons of High Scatter
4.2. DPF Soot Load and Idle Levels
4.3. Implications for PTI Sensors
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Disclaimer
References
- European Environment Agency. Air Quality in Europe: 2019 Report; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-9480-088-6. [Google Scholar]
- Li, Y.; Lane, K.; Corlin, L.; Patton, A.; Durant, J.; Thanikachalam, M.; Woodin, M.; Wang, M.; Brugge, D. Association of Long-Term Near-Highway Exposure to Ultrafine Particles with Cardiovascular Diseases, Diabetes and Hypertension. Int. J. Environ. Res. Public Health 2017, 14, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivas, I.; Beddows, D.C.S.; Amato, F.; Green, D.C.; Järvi, L.; Hueglin, C.; Reche, C.; Timonen, H.; Fuller, G.W.; Niemi, J.V.; et al. Source apportionment of particle number size distribution in urban background and traffic stations in four European cities. Environ. Int. 2020, 135, 105345. [Google Scholar] [CrossRef] [PubMed]
- Lorelei de Jesus, A.; Thompson, H.; Knibbs, L.D.; Kowalski, M.; Cyrys, J.; Niemi, J.V.; Kousa, A.; Timonen, H.; Luoma, K.; Petäjä, T.; et al. Long-term trends in PM2.5 mass and particle number concentrations in urban air: The impacts of mitigation measures and extreme events due to changing climates. Environ. Pollut. 2020, 263, 114500. [Google Scholar] [CrossRef] [PubMed]
- Paasonen, P.; Kupiainen, K.; Klimont, Z.; Visschedijk, A.; Denier van der Gon, H.A.C.; Amann, M. Continental anthropogenic primary particle number emissions. Atmos. Chem. Phys. 2016, 16, 6823–6840. [Google Scholar] [CrossRef] [Green Version]
- Grigoratos, T.; Martini, G. Brake wear particle emissions: A review. Environ. Sci. Pollut. Res. 2015, 22, 2491–2504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giechaskiel, B.; Lähde, T.; Suarez-Bertoa, R.; Clairotte, M.; Grigoratos, T.; Zardini, A.; Perujo, A.; Martini, G. Particle number measurements in the European legislation and future JRC activities. Combust. Eng. 2018, 174, 3–16. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Mamakos, A.; Andersson, J.; Dilara, P.; Martini, G.; Schindler, W.; Bergmann, A. Measurement of automotive nonvolatile particle number emissions within the European legislative framework: A review. Aerosol Sci. Technol. 2012, 46, 719–749. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Bonnel, P.; Perujo, A.; Dilara, P. Solid particle number (SPN) portable emissions measurement systems (PEMS) in the European legislation: A review. Int. J. Environ. Res. Public Health 2019, 16, 4819. [Google Scholar] [CrossRef] [Green Version]
- Giechaskiel, B.; Joshi, A.; Ntziachristos, L.; Dilara, P. European regulatory framework and particulate matter emissions of gasoline light-duty vehicles: A review. Catalysts 2019, 9, 586. [Google Scholar] [CrossRef] [Green Version]
- Kadijk, G.; Spreen, J. Roadworthiness Test Investigations of Diesel Particulate Filters on Vehicles; Report 10307v2; TNO: Delft, The Netherlands, 2015. [Google Scholar]
- Boulter, P.; Buekenhoudt, P.; Stricker, P.; Mäurer, H.-J.; Nolte, C.; Ost, T.; Schulz, W.; Weitz, K.-U.; Afflerbach, G.; Förster, C.; et al. TEDDIE: A New Roadworthiness Emission Test for Diesel Vehicles Involving NO, NO2 and PM Measurements; CITA: Brussels, Belgium, 2011. [Google Scholar]
- Boveroux, F.; Cassiers, S.; Buekenhoudt, P.; Chavatte, L.; De Meyer, P.; Jeanmart, H.; Verhelst, S.; Contino, F. Feasibility Study of a New Test Procedure to Identify high Emitters of Particulate Matter during Periodic Technical Inspection; SAE International: Warrendale, PA, USA, 2019; paper number 2019-01–1190. [Google Scholar]
- Yamada, H. Improving methodology of particulate measurement in periodic technical inspection with high-sensitivity techniques: Laser light scattering photometry and particle number method. Emiss. Control. Sci. Technol. 2019, 5, 37–44. [Google Scholar] [CrossRef]
- Kadijk, G. Roadworthiness Test Investigations of Diesel Particulate Filters; Report 10160v3; TNO: Delft, The Netherlands, 2013. [Google Scholar]
- Burtscher, H.; Lutz, T.; Mayer, A. A new periodic technical inspection for particle emissions of vehicles. Emiss. Control. Sci. Technol. 2019, 5, 279–287. [Google Scholar] [CrossRef]
- Boveroux, F.; Cassiers, S.; De Meyer, P.; Buekenhoudt, P.; Bergmans, B.; Idczak, F.; Jeanmart, H.; Verhelst, S.; Contino, F. Impact of mileage on particle number emission factors for Euro 5 and Euro 6 diesel passenger cars. Atmos. Environ. 2020, 117975. [Google Scholar] [CrossRef]
- Platt, S.M.; El Haddad, I.; Pieber, S.M.; Zardini, A.A.; Suarez-Bertoa, R.; Clairotte, M.; Daellenbach, K.R.; Huang, R.-J.; Slowik, J.G.; Hellebust, S.; et al. Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars. Sci. Rep. 2017, 7, 4926. [Google Scholar] [CrossRef]
- Bishop, G.A.; Schuchmann, B.G.; Stedman, D.H.; Lawson, D.R. Multispecies remote sensing measurements of vehicle emissions on Sherman Way in Van Nuys, California. J. Air Waste Manag. Assoc. 2012, 62, 1127–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Organ, B.; Zhou, J.L.; Surawski, N.C.; Hong, G.; Chan, E.F.C.; Yam, Y.S. Emission measurement of diesel vehicles in Hong Kong through on-road remote sensing: Performance review and identification of high-emitters. Environ. Pollut. 2018, 237, 133–142. [Google Scholar] [CrossRef]
- Kurniawan, A.; Schmidt-Ott, A. Monitoring the soot emissions of passing cars. Environ. Sci. Technol. 2006, 40, 1911–1915. [Google Scholar] [CrossRef]
- Kadijk, G.; Elstgeest, M.; van der Mark, P.; Ligterink, N. Follow-up Research into the PN Limit Value and the Measurement Method for Checking Particulate Filters with a Particle Number Counter; Report 10006; TNO: Delft, The Netherlands, 2020. [Google Scholar]
- Czerwinski, J.; Comte, P.; Engelmann, D.; Mayer, A.; Lutz, T.; Hensel, V. Considerations of Periodical Technical Inspection of Vehicles with deNOx Systems; SAE International: Warrendale, PA, USA, 2019; paper number 2019-01–0744. [Google Scholar]
- Kadijk, G.; Mayer, A. White Paper: NPTI—The New Periodic Technical Inspection Emission Test Procedure for Vehicles with Emission Control Systems. In Proceedings of the 21st ETH conference on combustion generated nanoparticles, Zürich, Switzerland, 19−22 June 2017. [Google Scholar]
- Kadijk, G.; Elstgeest, M.; Ligterink, N.; van der Mark, P. Investigation into a Periodic Technical Inspection (PTI) test Method to Check for Presence and Proper Functioning of Diesel Particulate Filters in Light-Duty Diesel Vehicles—Part 2; Report 10530; TNO: Delft, The Netherlands, 2017. [Google Scholar]
- Ministry for Infrastructure and Public Works. Regulation of the Minister for Environment and Housing of 21 November 2019; No. IENW/BSK-2019/202498; Amending the Vehicle Regulations to Enable the Control of Diesel Particulate filters with a Particle Counter and a Number of Other Technical Change; Ministry for Infrastructure and Public Works: Amsterdam, The Netherlands, 2019.
- Giechaskiel, B.; Cresnoverh, M.; Jörgl, H.; Bergmann, A. Calibration and accuracy of a particle number measurement system. Meas. Sci. Technol. 2010, 21, 045102. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Lähde, T.; Drossinos, Y. Regulating particle number measurements from the tailpipe of light-duty vehicles: The next step? Environ. Res. 2019, 172, 1–9. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Lahde, T.; Giechaskiel, B. Verification of NPTI-instruments for diesel and petrol vehicles—first results. In Proceedings of the 22nd ETH Conference on Combustion Generated Nanoparticles, Zürich, Switzerland, 18−21 June 2018. [Google Scholar]
- Riccobono, F.; Giechaskiel, B.; Mendoza Villafuerte, P. Particle Number PEMS Inter.-Laboratory Comparison Exercise; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Giechaskiel, B.; Casadei, S.; Mazzini, M.; Sammarco, M.; Montabone, G.; Tonelli, R.; Deana, M.; Costi, G.; Di Tanno, F.; Prati, M.; et al. Inter-laboratory correlation exercise with portable emissions measurement systems (PEMS) on chassis dynamometers. Appl. Sci. 2018, 8, 2275. [Google Scholar] [CrossRef] [Green Version]
- Giechaskiel, B.; Riccobono, F.; Vlachos, T.; Mendoza-Villafuerte, P.; Suarez-Bertoa, R.; Fontaras, G.; Bonnel, P.; Weiss, M. Vehicle emission factors of solid nanoparticles in the laboratory and on the road using portable emission measurement systems (PEMS). Front. Environ. Sci. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Giechaskiel, B.; Riccobono, F.; Bonnel, P. Feasibility Study on the Extension of the Real-Driving Emissions (RDE) Procedure to Particle Number (PN): Chassis Dynamometer Evaluation of Portable Emission Measurement Systems (PEMS) to Measure Particle Number (PN) Concentration: Phase II; Publications Office of the European Union: Luxembourg, 2015; ISBN 978-92-79-51003-8. [Google Scholar]
- Giechaskiel, B.; Mamakos, A.; Woodburn, J.; Szczotka, A.; Bielaczyc, P. Evaluation of a 10 nm particle number portable emissions measurement system (PEMS). Sensors 2019, 19, 5531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giechaskiel, B.; Lähde, T.; Gandi, S.; Keller, S.; Kreutziger, P.; Mamakos, A. Assessment of 10-nm particle number (PN) portable emissions measurement systems (PEMS) for future regulations. Int. J. Environ. Res. Public Health 2020, 17, 3878. [Google Scholar] [CrossRef] [PubMed]
- Isella, L.; Giechaskiel, B.; Drossinos, Y. Diesel-exhaust aerosol dynamics from the tailpipe to the dilution tunnel. J. Aerosol Sci. 2008, 39, 737–758. [Google Scholar] [CrossRef]
- Clairotte, M.; Valverde, V.; Bonnel, P.; Giechaskiel, P.; Carriero, M.; Otura, M.; Fontaras, G.; Pavlovic, J.; Martini, G.; Krasenbrink, A. Joint Research Centre 2017 Light-Duty Vehicles Emissions Testing Contribution to the EU Market Surveillance: Testing Protocols and Vehicle Emissions Performance; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-90600-8. [Google Scholar]
- Valverde, V.; Clairotte, M.; Bonnel, P.; Giechaskiel, P.; Carriero, M.; Otura, M.; Gruening, C.; Fontaras, G.; Pavlovic, J.; Martini, G.; et al. Joint Research Centre 2018 Light-Duty Vehicles Emissions Testing: Contribution to the EU Market Surveillance: Testing Protocols and Vehicle Emissions Performance; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-12333-0. [Google Scholar]
- Valverde, V.; Mora, B.A.; Clairotte, M.; Pavlovic, J.; Suarez-Bertoa, R.; Giechaskiel, B.; Astorga-LLorens, C.; Fontaras, G. Emission factors derived from 13 Euro 6b light-duty vehicles based on laboratory and on-road measurements. Atmosphere 2019, 10, 243. [Google Scholar] [CrossRef] [Green Version]
- Valverde-Morales, V.; Clairotte, M.; Pavlovic, J.; Giechaskiel, B.; Bonnel, P. On-Road Emissions of Euro 6d-TEMP Vehicles: Consequences of the Entry into Force of the RDE Regulation in Europe; SAE International: Warrendale, PA, USA, 2020; paper number 2020-01–2219. [Google Scholar]
- Valverde, V.; Giechaskiel, B. Assessment of gaseous and particulate emissions of a Euro 6d-temp diesel vehicle driven >1300 km including six diesel particulate filter regenerations. Atmosphere 2020, 11, 645. [Google Scholar] [CrossRef]
- Giechaskiel, B. Particle number emissions of a diesel vehicle during and between regeneration events. Catalysts 2020, 10, 587. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Astorga, C. Impact of cold temperature on Euro 6 passenger car emissions. Environ. Pollut. 2018, 234, 318–329. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Suarez-Bertoa, R.; Lahde, T.; Clairotte, M.; Carriero, M.; Bonnel, P.; Maggiore, M. Emissions of a Euro 6b diesel passenger car retrofitted with a solid ammonia reduction system. Atmosphere 2019, 10, 180. [Google Scholar] [CrossRef] [Green Version]
- Suarez-Bertoa, R.; Lähde, T.; Pavlovic, J.; Valverde, V.; Clairotte, M.; Giechaskiel, B. Laboratory and on-road evaluation of a GPF-equipped gasoline vehicle. Catalysts 2019, 9, 678. [Google Scholar] [CrossRef] [Green Version]
- Giechaskiel, B.; Zardini, A.; Martini, G. Particle emission measurements from L-category vehicles. SAE Int. J. Engines 2015, 8, 2322–2337. [Google Scholar] [CrossRef]
- Badshah, H.; Khalek, I.A. Solid particle emissions from vehicle exhaust during engine start-up. SAE Int. J. Engines 2015, 8, 1492–1502. [Google Scholar] [CrossRef]
- Premnath, V.; Khalek, I. Particle Emissions from Gasoline Direct Injection Engines during Engine Start-Up (Cranking); SAE International: Warrendale, PA, USA, 2019; paper number 2019-01–1182. [Google Scholar]
- Giechaskiel, B.; Zardini, A.A.; Clairotte, M. Exhaust gas condensation during engine cold start and application of the dry-wet correction factor. Appl. Sci. 2019, 9, 2263. [Google Scholar] [CrossRef] [Green Version]
- Bielaczyc, P.; Szczotka, A.; Woodburn, J. An overview of cold start emissions from direct injection spark-ignition and compression ignition engines of light duty vehicles at low ambient temperatures. Combust. Engines 2013, 154, 96–103. [Google Scholar]
- Giechaskiel, B.; Dilara, P.; Andersson, J. Particle measurement programme (PMP) light-duty inter-laboratory exercise: Repeatability and reproducibility of the particle number method. Aerosol Sci. Technol. 2008, 42, 528–543. [Google Scholar] [CrossRef]
- Majewski, W.A.; Khair, M.K. Diesel Emissions and Their Control; SAE International: Warrendale, PA, USA, 2006; ISBN 978-0-7680-0674-2. [Google Scholar]
- Stone, R. Introduction to Internal Combustion Engines, 4th ed.; SAE International: Warrendale, PA, USA, 2012; ISBN 978-0-7680-2084-7. [Google Scholar]
- Eastwood, P. Particulate Emissions from Vehicles; Wiley-Professional engineering publishing series; Wiley: Chichester, UK, 2008; ISBN 978-0-470-72455-2. [Google Scholar]
- Piock, W.; Hoffmann, G.; Berndorfer, A.; Salemi, P.; Fusshoeller, B. Strategies towards meeting future particulate matter emission requirements in homogeneous gasoline direct injection engines. SAE Int. J. Engines 2011, 4, 1455–1468. [Google Scholar] [CrossRef]
- Karlsson, R.B.; Heywood, J.B. Piston Fuel Film Observations in an Optical Access GDI Engine; SAE International: Warrendale, PA, USA, 2001; paper number 2001-01-2022. [Google Scholar]
- Burtscher, H. Physical characterization of particulate emissions from diesel engines: A review. J. Aerosol Sci. 2005, 36, 896–932. [Google Scholar] [CrossRef]
- Mamakos, A.; Martini, G.; Manfredi, U. Assessment of the legislated particle number measurement procedure for a Euro 5 and a Euro 6 compliant diesel passenger cars under regulated and unregulated conditions. J. Aerosol Sci. 2013, 55, 31–47. [Google Scholar] [CrossRef]
- Zhang, R.; Howard, K.; Kirkman, P.; Browne, D.; Lu, Z.; He, S.; Boger, T. A Study into the Impact of Engine Oil on Gasoline Particulate Filter Performance through a Real-World Fleet Test; SAE International: Warrendale, PA, USA, 2019; paper number 2019-01–0299. [Google Scholar]
- Bischof, O.F. Recent developments in the measurement of low particulate emissions from mobile sources: A review of particle number legislations. Emiss. Control. Sci. Technol. 2015, 1, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Swiss Federal Council. Swiss Regulation SR 941.242 Verordnung des EJPD über Abgasmessmittel für Verbrennungsmotoren (VAMV); Swiss Federal Council: Bern, Switzerland, 2006.
- Filippo, A.D.; Maricq, M.M. Diesel nucleation mode particles: Semivolatile or solid? Environ. Sci. Technol. 2008, 42, 7957–7962. [Google Scholar] [CrossRef]
- Kirchner, U.; Scheer, V.; Vogt, R.; Kägi, R. TEM study on volatility and potential presence of solid cores in nucleation mode particles from diesel powered passenger cars. J. Aerosol Sci. 2009, 40, 55–64. [Google Scholar] [CrossRef]
- Samaras, Z.C.; Andersson, J.; Bergmann, A.; Hausberger, S.; Toumasatos, Z.; Keskinen, J.; Haisch, C.; Kontses, A.; Ntziachristos, L.D.; Landl, L.; et al. Measuring Automotive Exhaust Particles Down to 10 nm; SAE International: Warrendale, PA, USA, 2020; paper number 2020-01-2209. [Google Scholar]
- Giechaskiel, B.; Wang, X.; Horn, H.-G.; Spielvogel, J.; Gerhart, C.; Southgate, J.; Jing, L.; Kasper, M.; Drossinos, Y.; Krasenbrink, A. Calibration of condensation particle counters for legislated vehicle number emission measurements. Aerosol Sci. Technol. 2009, 43, 1164–1173. [Google Scholar] [CrossRef]
- Schriefl, M.A.; Bergmann, A.; Fierz, M. Design principles for sensing particle number concentration and mean particle size with unipolar diffusion charging. IEEE Sens. J. 2019, 19, 1392–1399. [Google Scholar] [CrossRef]
- Schriefl, M.A.; Nishida, R.T.; Knoll, M.; Boies, A.M.; Bergmann, A. Characterization of particle number counters based on pulsed-mode diffusion charging. Aerosol Sci. Technol. 2020, 54, 772–789. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Ntziachristos, L.; Samaras, Z.; Casati, R.; Scheer, V.; Vogt, R. Effect of Speed and Speed-Transition on the Formation of Nucleation Mode Particles from a Light Duty Diesel Vehicle; SAE International: Warrendale, PA, USA, 2007; paper number 2007-01-1110. [Google Scholar]
- Badshah, H.; Kittelson, D.; Northrop, W. Particle emissions from light-duty vehicles during cold-cold start. Sae Int. J. Engines 2016, 9, 1775–1785. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Drossinos, Y. Theoretical investigation of volatile removal efficiency of particle number measurement systems. SAE Int. J. Engines 2010, 3, 1140–1151. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Maricq, M.; Ntziachristos, L.; Dardiotis, C.; Wang, X.; Axmann, H.; Bergmann, A.; Schindler, W. Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number. J. Aerosol Sci. 2014, 67, 48–86. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Melas, A.D.; Lähde, T.; Martini, G. Non-volatile particle number emission measurements with catalytic strippers: A review. Vehicles 2020, 2, 19. [Google Scholar] [CrossRef]
- Lahde, T.; Giechaskiel, B.; Martini, G. Development of Measurement Methodology for Sub 23 nm Particle Number (PN) Measurements; SAE International: Warrendale, PA, USA, 2020; paper number 2020-01–2211. [Google Scholar]
WLTC | NEDC | RDE | Cold Idle | Hot Idle | Comment | |
---|---|---|---|---|---|---|
Diesel w/o DPF | 0 | 6 1 | 0 | 5 | 6 | 3 from CVS |
Diesel with DPF | 18 + 2 | 2 + 4 | 15 | 8 | 26 | |
GDI w/o GPF | 17 + 1 | 9 | 13 | 17 | 27 | 6 from CVS |
GDI with GPF | 3 + 1 | 0 | 2 | 2 | 4 | |
PFI | 14 | 4 | 13 | 13 | 18 | |
LPG or CNG | 7 | 0 | 4 | 6 | 7 |
Cold WLTC CVS | Cold WLTC Tailpipe | Hot WLTC CVS | Hot WLTC Tailpipe | RDE 1 Tailpipe | |
---|---|---|---|---|---|
Cold idle [p/cm3] | 8.6 × 105 (42%) | 17.1 × 105 (10%) | - | - | 23.4 × 105 (32%) |
Hot idle [p/cm3] | 4.8 × 105 (41%) | 2.8 × 105 (4%) | 3.9 × 105 (5%) | 1.6 × 105 (16%) | 6.1 × 105 (58%) |
Cycle emissions [p/km] | 2.9 × 1012 (±5%) | 3.6 × 1012 (±7%) | 1.6 × 1012 (±7%) | 1.8 × 1012 (±6%) | 1.8 × 1012 (±8%) |
Vehicle | PN [p/km] | Cold Idle [p/cm3] | Hot Idle [p/cm3] | Study |
---|---|---|---|---|
DPF #1 before | 2.6 × 109 | n/a | <1.0 × 103 | [34] |
DPF #1 after | 2.0 × 1011 | 2.8 × 105 | 1.0 × 103 | [34] |
DPF #2 before | 3.0 × 109 | <1.0 × 103 | <1.0 × 103 | [35] |
DPF #2 after | 9.5 × 1011 | 1.5 × 106 | 2.0 × 103 | [35] |
DPF #3 before 1 | 2.0 × 109 | n/a | 1.0 × 103 | [42] |
DPF #3 after 1 | 6.0 × 1010 | 1.8 × 104 | 2.7 × 103 | [42] |
Diameter | Aerosol | 23 nm | 30 nm | 50 nm | 70−100 nm | 200 nm |
---|---|---|---|---|---|---|
PMP 1 | Mono | 0.33–0.60 | 0.59–0.91 | 0.99–1.00 | 1.00–1.13 | 1.00–1.14 |
PEMS 2 | Mono | 0.20–0.60 | 0.30–1.20 | 0.60–1.30 | 0.70–1.30 | 0.50–2.00 |
Diameter | Aerosol | 23 nm | 41 nm | 50 nm | 80 nm | 200 nm |
Dutch PTI 3 | Mono | 0.20–0.60 | - | 0.60 – 1.30 | 0.70–1.30 | - |
Swiss PTI 4 | Poly | <0.50 | >0.40 | - | 0.70–1.30 | <3.00 |
Diameter | Aerosol | Diameter | Number Conc. | Mass Conc. | Efficiency |
---|---|---|---|---|---|
PMP 1 | Mono or poly | ≥30 nm | ≥104 p/cm3 | - | ≥99% |
PEMS 2 | Poly | ≥50 nm | - | ≥1 mg/m3 | ≥99% |
Dutch PTI 3 | Mono | ≥30 | 0.5−1 × 104 p/cm3 | - | ≥95% |
Swiss PTI 4 | Poly | ≥30 | <105 p/cm3 | - | ≥95% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giechaskiel, B.; Lähde, T.; Suarez-Bertoa, R.; Valverde, V.; Clairotte, M. Comparisons of Laboratory and On-Road Type-Approval Cycles with Idling Emissions. Implications for Periodical Technical Inspection (PTI) Sensors. Sensors 2020, 20, 5790. https://doi.org/10.3390/s20205790
Giechaskiel B, Lähde T, Suarez-Bertoa R, Valverde V, Clairotte M. Comparisons of Laboratory and On-Road Type-Approval Cycles with Idling Emissions. Implications for Periodical Technical Inspection (PTI) Sensors. Sensors. 2020; 20(20):5790. https://doi.org/10.3390/s20205790
Chicago/Turabian StyleGiechaskiel, Barouch, Tero Lähde, Ricardo Suarez-Bertoa, Victor Valverde, and Michael Clairotte. 2020. "Comparisons of Laboratory and On-Road Type-Approval Cycles with Idling Emissions. Implications for Periodical Technical Inspection (PTI) Sensors" Sensors 20, no. 20: 5790. https://doi.org/10.3390/s20205790
APA StyleGiechaskiel, B., Lähde, T., Suarez-Bertoa, R., Valverde, V., & Clairotte, M. (2020). Comparisons of Laboratory and On-Road Type-Approval Cycles with Idling Emissions. Implications for Periodical Technical Inspection (PTI) Sensors. Sensors, 20(20), 5790. https://doi.org/10.3390/s20205790