A Low-Power WSN Protocol with ADR and TP Hybrid Control
Abstract
:1. Introduction
- We propose a hybrid control algorithm combined with TPC and ADR that could adapt the environmental interferences.
- Experimental results analysis show that the proposed algorithm achieved energy-saving with stable communication quality.
2. Related Research
3. System Implementation
3.1. System Architeture
3.2. TDMA Protocol
4. Measurement and Analysis of Radio Frequency
4.1. Parameters of Data Rate
4.2. Receiver Sensitivity and Transmission Time in Different Data Rate
4.3. Current Consumption in Different Transmission Power
4.4. Total Power Consumption of Data Rate and Transmission Power
5. Control Algorithm
Algorithm of Transmission Power and Data Rate Hybrid Control
6. Result
6.1. Experimental Method
6.2. Results and Analysis
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hung, C.W.; Hsu, W.T. Power consumption and calculation requirement analysis of AES for WSN IoT. Sensors 2018, 18, 1675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro-Ortiz, J.; Sendra, S.; Ameigeiras, P.; Lopez-Soler, J.M. Integration of LoRaWAN and 4G/5G for the Industrial Internet of Things. IEEE Commun. Mag. 2018, 56, 60–67. [Google Scholar] [CrossRef]
- Bachir, A.; Dohler, M.; Watteyne, T.; Leung, K.K. MAC essentials for wireless sensor networks. IEEE Commun. Surv. Tutor. 2010, 12, 222–248. [Google Scholar] [CrossRef] [Green Version]
- Hung, C.W.; Zhang, H.J.; Hsu, W.T. Analysis of Data Rate and Transmission Power Hybrid Control in WSN IoT. In Proceedings of the 4th International Symposium on Mobile Internet Security MobiSec 2019, Taichung, Taiwan, 17–19 October 2019. [Google Scholar]
- Sodhro, A.H.; Muzammal, M.; Talat, R.; Pirbhulal, S. A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks. Inf. Fusion 2020, 53, 155–164. [Google Scholar]
- Aust, S.; Ito, T. Sub 1GHz wireless LAN propagation path loss models for urban smart grid applications. In Proceedings of the 2012 International Conference on Computing, Networking and Communications (ICNC), IEEE, Maui, HI, USA, 30 January–2 February 2012; pp. 116–120. [Google Scholar]
- Aust, S.; Ito, T. Sub 1GHz wireless LAN deployment scenarios and design implications in rural areas. In Proceedings of the 2011 IEEE GLOBECOM Workshops (GC Wkshps), IEEE, Houston, TX, USA, 5–9 December 2011; pp. 1045–1049. [Google Scholar]
- Aust, S.; Prasad, R.V.; Niemegeers, I.G. IEEE 802.11 ah: Advantages in standards and further challenges for sub 1 GHz Wi-Fi. In Proceedings of the 2012 IEEE international conference on communications (ICC), IEEE, Ottawa, ON, Canada, 10–15 June 2012; pp. 6885–6889. [Google Scholar]
- Sahoo, P.K.; Pattanaik, S.R.; Wu, S.L. Design and analysis of a low latency deterministic network MAC for wireless sensor networks. Sensors 2017, 17, 2185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iala, I.; Quodou, M.; Aboutajdine, D.; Zytoune, O. Energy based collision avoidance at the mac layer for wireless sensor network. In Proceedings of the 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), IEEE, Fez, Morocco, 22–24 May 2017; pp. 1–5. [Google Scholar]
- Pande, H.; Kharat, M.U. Modified WiseMAC protocol for energy efficient wireless sensor networks with better throughput. In Proceedings of the 2016 International Conference on Internet of Things and Applications (IOTA), IEEE, Pune, India, 22–24 January 2016; pp. 364–367. [Google Scholar]
- Zhang, D.G.; Zhou, S.; Tang, Y.M. A low duty cycle efficient MAC protocol based on self-adaption and predictive strategy. Mob. Netw. Appl. 2018, 23, 828–839. [Google Scholar] [CrossRef]
- Lu, Y.; Qiu, Z.; Luo, Y.; Wei, L.; Lin, S.; Liu, X. A Modified TDMA Algorithm Based on Adaptive Timeslot Exchange in Ad Hoc Network. In Proceedings of the 2018 IEEE 4th International Conference on Computer and Communications (ICCC), IEEE, Chengdu, China, 7–10 December 2018; pp. 457–461. [Google Scholar]
- Lin, C.; Cai, X.; Su, Y.; Ni, P.; Shi, H. A dynamic slot assignment algorithm of TDMA for the distribution class protocol using node neighborhood information. In Proceedings of the 2017 11th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID), IEEE, Xiamen, China, 27–29 October 2017; pp. 138–141. [Google Scholar]
- Bhatia, A.; Hansdah, R.C. RD-TDMA: A randomized distributed TDMA scheduling for correlated contention in WSNs. In Proceedings of the 2014 28th International Conference on Advanced Information Networking and Applications Workshops, IEEE, Victoria, BC, Canada, 13–16 May 2014; pp. 378–384. [Google Scholar]
- Hao, X.; Yao, N.; Wang, L.; Wang, J. Joint resource allocation algorithm based on multi-objective optimization for wireless sensor networks. Appl. Soft Comput. 2020, 94, 106470. [Google Scholar] [CrossRef]
- Piyare, R.; Murpgy, A.L.; Magno, M.; Benini, L. On-demand TDMA for energy efficient data collection with LoRa and wake-up receiver. In Proceedings of the 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), IEEE, Limassol, Cyprus, 15–17 October 2018; pp. 1–4. [Google Scholar]
- Hung, C.W.; Chang, H.T.; Hsia, K.H.; Lai, Y.H. Transmission power control for wireless sensor network. J. Robot. Netw. Artif. Life 2017, 3, 279–282. [Google Scholar]
- Ikram, W.; Petersen, S.; Orten, P.; Thornhill, N.F. Adaptive multi-channel transmission power control for industrial wireless instrumentation. IEEE Trans. Ind. Inform. 2014, 10, 978–990. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishnan, S.; Krishna, B.T. Closed loop fuzzy logic based transmission power control for energy efficiency in wireless sensor networks. In Proceedings of the IEEE International Conference on Computer Communication and Systems ICCCS14, IEEE, Chennai, India, 20–21 February 2014; pp. 195–200. [Google Scholar]
- Wu, J.; Luo, J. Research on multi-rate in wireless sensor network based on real platform. In Proceedings of the 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), IEEE, Yichang, China, 21–23 April 2012; pp. 1240–1243. [Google Scholar]
- Hughes, J.B.; Lazaridis, P.; Glover, I.; Ball, A. A survey of link quality properties related to transmission power control protocols in wireless sensor networks. In Proceedings of the 2017 23rd International Conference on Automation and Computing (ICAC), IEEE, Huddersfield, UK, 7–8 September 2017; pp. 1–5. [Google Scholar]
- Chincoli, M.; Liotta, A. Self-learning power control in wireless sensor networks. Sensors 2018, 18, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, X.; Plets, D.; Tanghe, E.; Pessemier, T.D.; Martens, L.; Joseph, W. An efficient genetic algorithm for large-scale transmit power control of dense and robust wireless networks in harsh industrial environments. Appl. Soft Comput. 2018, 65, 243–259. [Google Scholar] [CrossRef] [Green Version]
- Dou, Z.; Zhao, Z.Z.; Jin, Q.; Zhang, L.; Shu, Y.; Yang, O. Energy-efficient rate adaptation for outdoor long distance WiFi links. In Proceedings of the 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), IEEE, Shanghai, China, 10–15 April 2011; pp. 271–276. [Google Scholar]
- Yao, M.; Liu, J.; Qian, Y.; Qiu, Z.; Kwak, K.S.; Hanlim, I. Adaptive Rate Control and Frame Length Adjustment for IEEE 802.11 n Wireless Networks. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), IEEE, San Francisco, CA, USA, 19–22 March 2017; pp. 1–6. [Google Scholar]
- Yin, W.; Hu, P.; Indulska, J.; Portmann, M.; Mao, Y. MAC-layer rate control for 802.11 networks: A survey. Wirel. Netw. 2020, 26, 3793–3830. [Google Scholar] [CrossRef]
- Sodhro, A.H.; Sangaiah, A.K.; Sodhro, G.H.; Lohano, S.; Pirbhulal, S. An energy-efficient algorithm for wearable electrocardiogram signal processing in ubiquitous healthcare applications. Sensors 2018, 18, 923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, F.; Chen, Y.; Dai, X. Utilize Adaptive Spreading Code Length to Increase Energy Efficiency for WSN. In Proceedings of the 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), IEEE, Dresden, Germany, 2–5 June 2013; pp. 1–5. [Google Scholar]
- Zhang, Q. Energy saving efficiency comparison of transmit power control and link adaptation in BANs. In Proceedings of the 2013 IEEE International Conference on Communications (ICC), IEEE, Budapest, Hungary, 9–13 June 2013; pp. 1672–1677. [Google Scholar]
- Hung, C.W.; Hsu, W.T.; Hsia, K.H. Using Adaptive Data Rate with DSSS Optimization and Transmission Power Control for Ultra-Low Power WSN. In Proceedings of the 2019 12th International Conference on Developments in eSystems Engineering (DeSE), IEEE, Kazan, Russia, 7–10 October 2019; pp. 611–614. [Google Scholar]
Data Rate | Frequency Deviation | RX BW |
---|---|---|
250 kbps | 126.953125 kHz | 541.666667 kHz |
225 kbps | 114.257812 kHz | 464.285714 kHz |
200 kbps | 101.562500 kHz | 406.250000 kHz |
175 kbps | 88.867188 kHz | 406.250000 kHz |
150 kbps | 76.171875 kHz | 325.000000 kHz |
125 kbps | 63.476562 kHz | 270.833333 kHz |
100 kbps | 50.781250 kHz | 232.142857 kHz |
75 kbps | 38.085938 kHz | 162.500000 kHz |
50 kbps | 25.390625 kHz | 116.071429 kHz |
Data Rate | Sensitivity |
---|---|
50 kbps | −96.93 dBm |
75 kbps | −95.22 dBm |
100 kbps | −94.36 dBm |
125 kbps | −93.69 dBm |
150 kbps | −93.12 dBm |
175 kbps | −91.96 dBm |
200 kbps | −91.53 dBm |
225 kbps | −90.25 dBm |
250 kbps | −90.06 dBm |
Transmit Power (dBm) | Current (mA) | Transmit Power (dBm) | Current (mA) | Transmit Power (dBm) | Current (mA) |
---|---|---|---|---|---|
10.062 | 37.739 | −1.3157 | 16.637 | −15.688 | 13.005 |
9.3152 | 35.763 | −2.0975 | 16.144 | −17.207 | 12.791 |
8.2542 | 33.223 | −2.9932 | 15.633 | −18.484 | 12.612 |
7.1839 | 31.071 | −4.0892 | 15.027 | −19.539 | 12.509 |
6.8546 | 30.347 | −4.7187 | 14.729 | −20.784 | 12.395 |
6.2026 | 29.153 | −5.5103 | 14.42 | −21.604 | 12.356 |
5.5377 | 28.042 | −6.8004 | 14.012 | −22.212 | 12.299 |
4.3618 | 20.562 | −7.5317 | 13.913 | −23.3 | 12.246 |
3.6703 | 20.005 | −8.5849 | 14.893 | −24.073 | 12.173 |
3.0454 | 19.349 | −9.7606 | 14.474 | −25.125 | 12.116 |
2.2062 | 18.613 | −11.155 | 14.077 | −26.202 | 12.059 |
0.78139 | 17.556 | −12.904 | 13.65 | −27.653 | 12.021 |
−0.14598 | 17.583 | −13.856 | 13.325 | −28.899 | 11.941 |
−0.98536 | 16.942 | −14.407 | 13.219 |
Packet Error Number | PER (%) | Response (TX) Average Current Consumption | Overall Average Current Consumption | |
---|---|---|---|---|
Node1 | 7989 | 1.4035 | 8.4740 uA | 35.924 uA |
Node6 | 213 | 0.0374 | 39.852 uA | 74.281 uA |
Node2 | 3599 | 0.6322 | 10.493 uA | 38.310 uA |
Node7 | 864 | 0.1518 | 39.852 uA | 74.281 uA |
Node3 | 5426 | 0.9532 | 11.760 uA | 39.845 uA |
Node8 | 519 | 0.0912 | 39.852 uA | 74.281 uA |
Node4 | 4798 | 0.8429 | 16.106 uA | 44.991 uA |
Node9 | 1896 | 0.3331 | 39.852 uA | 74.281 uA |
Node5 | 2283 | 0.4011 | 5.6440 uA | 32.516 uA |
Node10 | 1922 | 0.3376 | 39.852 uA | 74.281 uA |
Experimental Group | Node 1 | Node 2 | Node 3 | Node 4 | Node 5 |
---|---|---|---|---|---|
Battery voltage | 2.659 V | 2.65 V | 2.66 V | 2.652 V | 2.669 V |
Control group | Node 6 | Node 7 | Node 8 | Node 9 | Node 10 |
Battery voltage | 2.618 V | 2.614 V | 2.617 V | 2.606 V | 2.624 V |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, C.-W.; Zhang, H.-J.; Hsu, W.-T.; Zhuang, Y.-D. A Low-Power WSN Protocol with ADR and TP Hybrid Control. Sensors 2020, 20, 5767. https://doi.org/10.3390/s20205767
Hung C-W, Zhang H-J, Hsu W-T, Zhuang Y-D. A Low-Power WSN Protocol with ADR and TP Hybrid Control. Sensors. 2020; 20(20):5767. https://doi.org/10.3390/s20205767
Chicago/Turabian StyleHung, Chung-Wen, Hao-Jun Zhang, Wen-Ting Hsu, and Yi-Da Zhuang. 2020. "A Low-Power WSN Protocol with ADR and TP Hybrid Control" Sensors 20, no. 20: 5767. https://doi.org/10.3390/s20205767
APA StyleHung, C.-W., Zhang, H.-J., Hsu, W.-T., & Zhuang, Y.-D. (2020). A Low-Power WSN Protocol with ADR and TP Hybrid Control. Sensors, 20(20), 5767. https://doi.org/10.3390/s20205767