Low-Finesse Fabry–Pérot Interferometers Applied in the Study of the Relation between the Optical Path Difference and Poles Location
Abstract
1. Introduction
2. Materials and Methods
2.1. Optical System
2.2. Optical Signal
2.3. Cosine Function Determination
2.4. Pole-Zero Map Representation
3. Results
3.1. Optical Signals
3.2. Cosine Functions
3.3. Pole-Zero Map Representation
4. Discussion
- (a)
- Interferometry systems can be studied on the complex s-plane;
- (b)
- The modulated function can be expressed as an s-complex function , applying the Laplace transform;
- (c)
- The cosine function filtered from the interference pattern always has one zero and two poles ;
- (d)
- The zero is over the origin and it contains the amplitude information;
- (e)
- (f)
- The pole-zero map gives us information about the optical path difference (OPD);
- (g)
- Physical parameters are measured on the complex s-plane;
- (h)
- Theoretical and experimental results have small variations due to numerical errors and variations between theoretical and experimental parameters;
- (i)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hassan, M.A.; Martin, H.; Jiang, X. Development of a spatially dispersed short-coherence interferometry sensor using diffraction grating orders: Publisher’s note. Appl. Opt. 2018, 57, 5. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Ge, J.; Chen, Z. Development of stable monolithic wide-field Michelson interferometers. Appl. Opt. 2011, 50, 4105–4114. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Lyu, D.; Huang, Q.; Qu, Y.; Wang, W.; Sun, T.; Yang, M. Dielectric film based optical fiber sensor using Fabry-Pérot resonator structure. Opt. Commun. 2019, 430, 63–69. [Google Scholar] [CrossRef]
- Liang, Y.; Zhao, M.; Wu, Z.; Morthier, G. Investigation of grating-assisted trimodal interferometer biosensors based on a polymer platform. Sensors 2018, 18, 1502. [Google Scholar] [CrossRef] [PubMed]
- Kamenev, O.; Kulchin, Y.N.; Petrov, Y.S.; Khiznyak, R.V.; Romashko, R.V. Fiber-optic seismeter on the basis of Mach-Zehnder interferometer. Sens. Actuors A Phys. 2016, 244, 133–137. [Google Scholar] [CrossRef]
- Zhao, N.; Lin, Q.; Jing, Z.; Yao, K.; Tian, B.; Fang, X.; Shi, P.; Zhan, Z. High temperature high sensitivity multipoint sensing system based on three cascade Mach-Zehnder interferometers. Sensors 2018, 18, 2688. [Google Scholar] [CrossRef]
- Jia, X.; Liu, Z.; Deng, Z.; Wang, Z.; Zhen, Z. Dynamic absolute distance measurement by frequency sweeping interferometry based on Doppler beat frequency tracking model. Opt. Commun. 2019, 430, 163–169. [Google Scholar] [CrossRef]
- Vigneswaran, D.; Ayyanar, V.N.; Sharman, M.; Sumahí, M.; Mani Rajan, M.S.; Porsezian, K. Salinity sensor using photonic crystal fiber. Sens. Actuors Phys. A 2019, 269, 22–28. [Google Scholar] [CrossRef]
- Dong, C.; Li, K.; Jeang, Y.; Arola, D.; Zhang, D. Evaluation of thermal expansion coefficient Carbon fiber reinforced composites using electronic speckle interferometry. Opt. Express 2018, 26, 531. [Google Scholar] [CrossRef]
- Wang, S.; Gao, Z.; Li, G.; Feng, Z.; Feng, Q. Continual mechanical vibration trajectory tracking based on electro-optical heterodyne interferometric. Opt. Express 2014, 22, 7799. [Google Scholar] [CrossRef]
- Miridonov, S.V.; Shlyaing, M.G.; Tentori, D. Twin-grating fiber optic sensor demodulation. Opt. Commun. 2001, 191, 253–262. [Google Scholar] [CrossRef]
- Pan, H.; Qu, X.; Shi, C.; Zhang, F.; Li, Y. Resolution-enhancement and sampling error correction based on molecular absortion line in frequency scanning interferometry. Opt. Commun. 2018, 416, 214–220. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 17th ed.; Cambridge University Press: Cambridge, UK, 1999; p. 256. [Google Scholar]
- Dicaire, M.C.N.; Upham, J.; De Leon, I.; Schulz, S.; Boyd, R.W. Group delay measurement of fiber Bragg grating resonances in transmission: Fourier transform interferometry versus Hilbert transform. J. Opt. Soc. Am. B 2014, 31, 5. [Google Scholar] [CrossRef]
- Ma, C.T.; Chang, Y.W.; Yang, Y.J.; Lee, C.L. A dual-polymer fiber Fizeau interferometer for simultaneous measurement of relative humidity and temperature. Sensor 2017, 17, 2659. [Google Scholar] [CrossRef] [PubMed]
- Hirai, A.; Matsumoto, H. Low-coherence tandem interferometer for measurement of group refractive index without knowledge of the thickness of the test sample. Opt. Lett. 2003, 28, 2112–2114. [Google Scholar] [CrossRef] [PubMed]
- Popescu, N.; Ivanescu, M.; Popescu, D. A note on observer-based frequency control for a class of systems described by uncertain models. J. Dyn. Syst. Meas. Control 2017, 140, 021008. [Google Scholar] [CrossRef]
- Campi, M.C.; Garatti, S.; Prandini, M. The scenario approach for systems and control design. Annu. Rev. Control 2009, 33, 149–157. [Google Scholar] [CrossRef]
- Bašić, M.; Vukadinović, D.; Petrović, G. Dynamic and pole-zero analysis of self-excited induction generator using a novel model with iron losses. Electr. Power Energy Syst. 2012, 42, 105–118. [Google Scholar] [CrossRef]
- Guillen Bonilla, A.; Rodríguez Betancourtt, V.M.; Guillen Bonilla, H.; Gildo Ortíz, L.; Blanco Alonso, O.; Franco Rodríguez, N.E.; Reyes Gómez, J.; Guillen Bonilla, J.T. A new detection system based on the trirutile-type CoSb2O6 oxide. J. Mater. Sci. Mater. Electron. 2018, 29, 15741–15753. [Google Scholar] [CrossRef]
- Guillen Bonilla, J.; Guillen Bonilla, A.; Rodríguez Betancourtt, V.; Guillen Bonilla, H.; Casillas Zamora, A. A Theoretical Study and Numerical Simulation of a Quasi-Distributed Sensor Based on the Low-Finesse Fabry-Perot Interferometer: Frequency-Division Multiplexing. Sensors 2017, 17, 859. [Google Scholar] [CrossRef]
- Guillen Bonilla, J.T.; Guillen Bonilla, H.; Rodríguez Betancourtt, V.M.; Casillas Zamora, A.; Sánchez Morales, M.E.; Gildo Ortiz, L.; Guillen Bonilla, A. Signal Analysis, Signal Demodulation and Numerical Simulation of a Quasi-Distributed Optical Fiber Sensor Based on FDM/WDM Techniques and Fabry-Pérot Interferometers. Sensors 2019, 19, 1759. [Google Scholar] [CrossRef] [PubMed]
- Shlyagin, M.G.; Miridonov, S.V.; Tentori, D. Frequency Multiplexed Quasi-distrisbuted Fiber-Optic Interferometric Sensor. Rev. Mexicana Física 1997, 43, 533–544. [Google Scholar]
- Yu, Z.; Yang, J.; Yuan, Y.; Li, C.; Liang, S.; Hou, L.; Peng, F.; Wu, B.; Zhang, J.; Liu, Z. Quasi-distributed Birefringence Dispersion Measurement for Polarization Maintain Device with High Accuracy Based on White Light Interferometry. Opt. Express 2016, 24, 1587–1597. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillen Bonilla, J.T.; Guillen Bonilla, H.; Rodríguez Betancourtt, V.M.; Sánchez Morales, M.E.; Reyes Gómez, J.; Casillas Zamora, A.; Guillen Bonilla, A. Low-Finesse Fabry–Pérot Interferometers Applied in the Study of the Relation between the Optical Path Difference and Poles Location. Sensors 2020, 20, 453. https://doi.org/10.3390/s20020453
Guillen Bonilla JT, Guillen Bonilla H, Rodríguez Betancourtt VM, Sánchez Morales ME, Reyes Gómez J, Casillas Zamora A, Guillen Bonilla A. Low-Finesse Fabry–Pérot Interferometers Applied in the Study of the Relation between the Optical Path Difference and Poles Location. Sensors. 2020; 20(2):453. https://doi.org/10.3390/s20020453
Chicago/Turabian StyleGuillen Bonilla, José Trinidad, Héctor Guillen Bonilla, Verónica María Rodríguez Betancourtt, María Eugenia Sánchez Morales, Juan Reyes Gómez, Antonio Casillas Zamora, and Alex Guillen Bonilla. 2020. "Low-Finesse Fabry–Pérot Interferometers Applied in the Study of the Relation between the Optical Path Difference and Poles Location" Sensors 20, no. 2: 453. https://doi.org/10.3390/s20020453
APA StyleGuillen Bonilla, J. T., Guillen Bonilla, H., Rodríguez Betancourtt, V. M., Sánchez Morales, M. E., Reyes Gómez, J., Casillas Zamora, A., & Guillen Bonilla, A. (2020). Low-Finesse Fabry–Pérot Interferometers Applied in the Study of the Relation between the Optical Path Difference and Poles Location. Sensors, 20(2), 453. https://doi.org/10.3390/s20020453