Lie Group Methods in Blind Signal Processing
Abstract
:1. Introduction
2. Model Definition (ICA, ISA)
3. Geometry of ICA, ISA and Other BSP Models
4. Lie Group Optimization Methods. One-Parameter Subalgebra and Toral Subalgebra
5. Experimental Results
- (1)
- algorithm SD unconstrained on the Euclidean space,
- (2)
- algorithm SD on the Euclidean space with constraint restoration,
- (3)
- algorithm SD on the Euclidean space with penalty function,
- (4)
- non-geodesic algorithm SD on Riemannian space,
- (5)
- geodesic algorithm SD on Riemannian space.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Lie Group and Lie Algebra
- Closure under group operation: if then
- Associativity:
- There exists a neutral element and an inverse element for every element of the group, such that:
References
- Fiori, S. Quasi-geodesic neural learning algorithms over the orthogonal group: A tutorial. J. Mach. Learn. Res. 2005, 6, 743–781. [Google Scholar]
- Georgiev, P.; Theis, F.; Cichocki, A.; Bakardjian, H. Sparse component analysis: A new tool for data mining. In Data Mining in Biomedicine; Springer: Boston, MA, USA, 2007; pp. 91–116. [Google Scholar]
- Hao, Y.; Song, L.; Cui, L.; Wang, H. A three-dimensional geometric features-based SCA algorithm for compound faults diagnosis. Measurement 2019, 134, 480–491. [Google Scholar] [CrossRef]
- Hao, Y.; Song, L.; Cui, L.; Wang, H. Underdetermined source separation of bearing faults based on optimized intrinsic characteristic-scale decomposition and local non-negative matrix factorization. IEEE Access 2019, 7, 11427–11435. [Google Scholar] [CrossRef]
- Kaselimi, M.; Doulamis, N.; Doulamis, A.; Voulodimos, A.; Protopapadakis, E. Bayesian-optimized Bidirectional LSTM Regression Model for Non-Intrusive Load Monitoring. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 2747–2751. [Google Scholar]
- Altrabalsi, H.; Stankovic, V.; Liao, J.; Stankovic, L. Low-complexity energy disaggregation using appliance load modelling. Aims Energy 2016, 4, 884–905. [Google Scholar] [CrossRef]
- Smith, S.T. Optimization techniques on Riemannian manifolds. Fields Inst. Commun. 1994, 3, 113–135. [Google Scholar]
- Plumbley, M.D. Geometrical methods for non-negative ICA: Manifolds, Lie groups and toral subalgebras. Neurocomputing 2005, 67, 161–197. [Google Scholar] [CrossRef]
- Plumbley, M.D. Lie group methods for optimization with orthogonality constraints. In Proceedings of the International Conference on Independent Component Analysis and Signal Separation, Granada, Spain, 22–24 September 2004; pp. 1245–1252. [Google Scholar]
- Plumbley, M.D. Algorithms for nonnegative independent component analysis. IEEE Trans. Neural Netw. 2003, 14, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Plumbley, M.D. Optimization using Fourier expansion over a geodesic for non-negative ICA. In Proceedings of the International Conference on Independent Component Analysis and Signal Separation, Granada, Spain, 22–24 September 2004; pp. 49–56. [Google Scholar]
- Edelman, A.; Arias, T.A.; Smith, S.T. The geometry of algorithms with orthogonality constraints. Siam J. Matrix Anal. Appl. 1998, 20, 303–353. [Google Scholar] [CrossRef]
- Birtea, P.; Casu, I.; Comanescu, D. Steepest descent algorithm on orthogonal Stiefel manifolds. arXiv 2017, arXiv:1709.06295. [Google Scholar]
- Mika, D.; Kleczkowski, P. ICA-based single channel audio separation: New bases and measures of distance. Arch. Acoust. 2011, 36, 311–331. [Google Scholar] [CrossRef] [Green Version]
- Mika, D.; Kleczkowski, P. Automatic clustering of components for single channel ICA-based signal demixing. In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Lisbon, Portugal, 13–16 June 2010; pp. 5350–5359. [Google Scholar]
- Hyvärinen, A.; Hoyer, P. Emergence of phase-and shift-invariant features by decomposition of natural images into independent feature subspaces. Neural Comput. 2000, 12, 1705–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvana, S.E.; Amatob, U.; Qic, C.; Gallivanc, K.A.; Carforab, M.F.; Larobinad, M.; Alfanod, B. Unconstrained Optimizers for ICA Learning on Oblique Manifold Using Parzen Density Estimation; Tech. Rep. FSU11-05; Florida State University Department of Mathematics: Tallahassee, FL, USA, 2011. [Google Scholar]
- Hyvarinen, A.; Karhunen, J.; Oja, E. Independent Component Analysis; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Absil, P.-A.; Gallivan, K.A. Joint Diagonalization on the Oblique Manifold for Independent Component Analysis. In Proceedings of the 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, Toulouse, France, 14–19 May 2006. [Google Scholar]
- Selvan, S.E.; Amato, U.; Gallivan, K.A.; Qi, C.; Carfora, M.F.; Larobina, M.; Alfano, B. Descent algorithms on oblique manifold for source-adaptive ICA contrast. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1930–1947. [Google Scholar] [CrossRef] [PubMed]
- Nishimori, Y.; Akaho, S. Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold. Neurocomputing 2005, 67, 106–135. [Google Scholar] [CrossRef]
- Absil, P.-A.; Mahony, R.; Sepulchre, R. Optimization Algorithms on Matrix Manifolds; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Absil, P.-A.; Mahony, R.; Sepulchre, R. Riemannian geometry of Grassmann manifolds with a view on algorithmic computation. Acta Appl. Math. 2004, 80, 199–220. [Google Scholar] [CrossRef]
- Comon, P.; Golub, G.H. Tracking a few extreme singular values and vectors in signal processing. Proc. IEEE 1990, 78, 1327–1343. [Google Scholar] [CrossRef]
- Demmel, J.W. Three methods for refining estimates of invariant subspaces. Computing 1987, 38, 43–57. [Google Scholar] [CrossRef]
- Nishimori, Y.; Akaho, S.; Abdallah, S.; Plumbley, M.D. Flag manifolds for subspace ICA problems. In Proceedings of the 2007 IEEE International Conference on Acoustics, Speech and Signal Processing—ICASSP’07, Honolulu, HI, USA, 15–20 April 2007; pp. 1417–1420. [Google Scholar]
- Nishimori, Y.; Akaho, S.; Plumbley, M.D. Riemannian optimization method on the flag manifold for independent subspace analysis. In Proceedings of the International Conference on Independent Component Analysis and Signal Separation, Charleston, SC, USA, 5–8 March 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 295–302. [Google Scholar]
- Nishimori, Y.; Akaho, S.; Plumbley, M.D. Natural conjugate gradient on complex flag manifolds for complex independent subspace analysis. In Proceedings of the International Conference on Artificial Neural Networks, Prague, Czech Republic, 3–6 September 2008; pp. 165–174. [Google Scholar]
- Gallier, J.; Xu, D. Computing exponentials of skew-symmetric matrices and logarithms of orthogonal matrices. Int. J. Robot. Autom. 2003, 18, 10–20. [Google Scholar]
- Pecora, A.; Maiolo, L.; Minotti, A.; De Francesco, R.; De Francesco, E.; Leccese, F.; Cagnetti, M.; Ferrone, A. Strain gauge sensors based on thermoplastic nanocomposite for monitoring inflatable structures. In Proceedings of the 2014 IEEE Metrology for Aerospace (MetroAeroSpace), Benevento, Italy, 29–30 May 2014; pp. 84–88. [Google Scholar]
- Krantz, S.G. Function Theory of Several Complex Variables; American Mathematical Soc.: Providence, RI, USA, 2011. [Google Scholar]
- Cichocki, A.; Amari, S. Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mika, D.; Jozwik, J. Lie Group Methods in Blind Signal Processing. Sensors 2020, 20, 440. https://doi.org/10.3390/s20020440
Mika D, Jozwik J. Lie Group Methods in Blind Signal Processing. Sensors. 2020; 20(2):440. https://doi.org/10.3390/s20020440
Chicago/Turabian StyleMika, Dariusz, and Jerzy Jozwik. 2020. "Lie Group Methods in Blind Signal Processing" Sensors 20, no. 2: 440. https://doi.org/10.3390/s20020440
APA StyleMika, D., & Jozwik, J. (2020). Lie Group Methods in Blind Signal Processing. Sensors, 20(2), 440. https://doi.org/10.3390/s20020440