Defending Against Randomly Located Eavesdroppers by Establishing a Protecting Region
Abstract
:1. Introduction
2. System Model
3. Insecure Region Analysis
3.1. Hybrid Outage Probability
- Transmission outage event occurs when . In this case, we find , which conflicts with the fact that . As such, is not supported by the main channel and Alice can not transmit a signal.
- Secrecy outage event occurs when and . In this case, as some information on the confidential signal can be known by Eve, perfect secrecy cannot be achieved.
- Secure transmission event occurs when . In this case, perfect secrecy can be guaranteed.
3.2. Insecure Region and Safe Transmission Range
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zheng, J.; Cai, Y.; Shen, X.; Zheng, Z.; Yang, W. Green energy optimization in energy harvesting wireless sensor networks. IEEE Commun. Mag. 2015, 53, 150–157. [Google Scholar] [CrossRef]
- Zou, Y.; Zhu, J.; Wang, X.; Hanzo, L. A survey on wireless security: Technical challenges, recent advances, and future trends. Proc. IEEE 2016, 104, 1727–1765. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Gong, Y.; Xiao, P.; Chambers, J.A. Dual antenna selection in secure cognitive radio networks. IEEE Trans. Veh. Technol. 2016, 65, 7993–8002. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Coon, J.P.; Tajbakhsh, S.E. Secure routing for multihop Ad Hoc networks with inhomogeneous eavesdropper clusters. IEEE Trans. Veh. Technol. 2018, 67, 10660–10670. [Google Scholar] [CrossRef] [Green Version]
- Hamamreh, J.M.; Furqan, H.M.; Arslan, H. Classifications and applications of physical layer security techniques for confidentiality: A comprehensive survey. IEEE Commun. Surv. Tutor. 2019, 21, 1773–1828. [Google Scholar] [CrossRef]
- Hu, H.; Gao, Z.; Liao, X.; Leung, V.C.M. Secure communications in CIoT networks with a wireless energy harvesting untrusted relay. Sensors 2017, 17, 2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, F.; Yao, M. Improving physical-layer security for CRNs using sinr-based cooperative beamforming. IEEE Trans. Veh. Technol. 2016, 65, 1835–1841. [Google Scholar] [CrossRef]
- Lee, J. Full-duplex relay for enhancing physical layer security in multi-hop relaying systems. IEEE Commun. Lett. 2015, 19, 525–528. [Google Scholar] [CrossRef]
- Wu, Y.; Khisti, A.; Xiao, C.; Caire, G.; Wong, K.; Gao, X. A survey of physical layer security techniques for 5G wireless networks and challenges ahead. IEEE J. Sel. Areas Commun. 2018, 36, 679–695. [Google Scholar] [CrossRef] [Green Version]
- Son, W.; Jang, H.S.; Jung, B.C. A pseudo-random beamforming technique for improving physical-layer security of MIMO cellular networks. Entropy 2019, 21, 1038. [Google Scholar] [CrossRef] [Green Version]
- Zeng, M.; Nguyen, N.; Dobre, O.A.; Poor, H.V. Securing downlink massive MIMO-NOMA networks with artificial noise. IEEE J. Sel. Top. Signal Process. 2019, 13, 685–699. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.; Nguyen, H.V.; Dobre, O.A.; Shin, O. A new design paradigm for secure full-duplex multiuser systems. IEEE J. Sel. Areas Commun. 2018, 36, 1480–1498. [Google Scholar] [CrossRef]
- Lin, S.H.; Lu, R.R.; Fu, X.T.; Tong, A.L.; Wang, J.Y. Physical-layer security analysis over m-distributed fading channels. Entropy 2019, 21, 998. [Google Scholar] [CrossRef] [Green Version]
- Tugnait, J.K. Self-contamination for detection of pilot contamination attack in multiple antenna systems. IEEE Wirel. Commun. Lett. 2015, 4, 525–528. [Google Scholar] [CrossRef]
- Zhou, X.; Maham, B.; Hjorungnes, A. Pilot contamination for active eavesdropping. IEEE Trans. Wirel. Commun. 2012, 11, 903–907. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, H.; Zhang, R. Detection of pilot contamination attack based on uncoordinated frequency shifts. IEEE Trans. Commun. 2018, 66, 2658–2670. [Google Scholar] [CrossRef]
- Liu, C.; Lee, J.; Quek, T.Q.S. Secure transmission in the presence of full-duplex active eavesdropper. In Proceedings of the 2017 IEEE Global Communications Conference (GLOBECOM), Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Liu, Z.; Li, N.; Tao, X.; Li, S.; Xu, J.; Zhang, B. Artificial-noise-aided secure communication with full-duplex active eavesdropper. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–7. [Google Scholar]
- Tang, X.; Ren, P.; Han, Z. Power-efficient secure transmission against full-duplex active eavesdropper: A game-theoretic framework. IEEE Access 2017, 5, 24632–24645. [Google Scholar] [CrossRef]
- Tang, X.; Ren, P.; Wang, Y.; Han, Z. Combating full-duplex active eavesdropper: A hierarchical game perspective. IEEE Trans. Commun. 2017, 65, 1379–1395. [Google Scholar] [CrossRef]
- Fang, H.; Xu, L.; Zou, Y.; Wang, X.; Choo, K.R. Three-stage stackelberg game for defending against full-duplex active eavesdropping attacks in cooperative communication. IEEE Trans. Veh. Technol. 2018, 67, 10788–10799. [Google Scholar] [CrossRef]
- Lv, L.; Ding, Z.; Chen, J.; Al-Dhahir, N. Design of secure NOMA against full-duplex proactive eavesdropping. IEEE Wirel. Commun. Lett. 2019, 8, 1090–1094. [Google Scholar] [CrossRef]
- Zhou, H.; He, D.; Wang, H.; Yang, D. Optimal relay selection with a full-duplex active eavesdropper in cooperative wireless networks. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 28 April–1 May 2019; pp. 1–5. [Google Scholar]
- Chen, G.; Gong, Y.; Xiao, P.; Chambers, J.A. Physical Layer Network Security in the Full-Duplex Relay System. IEEE Trans. Inf. Forensics Secur. 2015, 10, 574–583. [Google Scholar] [CrossRef] [Green Version]
- Karas, D.S.; Boulogeorgos, A.A.; Karagiannidis, G.K. Physical layer security with uncertainty on the location of the eavesdropper. IEEE Wirel. Commun. Lett. 2016, 5, 540–543. [Google Scholar] [CrossRef] [Green Version]
- Karas, D.S.; Boulogeorgos, A.A.; Karagiannidis, G.K.; Nallanathan, A. Physical Layer security in the presence of interference. IEEE Wirel. Commun. Lett. 2017, 6, 802–805. [Google Scholar] [CrossRef]
- Tang, J.; Chen, G.; Coon, J.P. Secrecy performance analysis of wireless communications in the presence of uav jammer and randomly located uav eavesdroppers. IEEE Trans. Inf. Forensics Secur. 2019, 14, 3026–3041. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Coon, J.P.; Di Renzo, M. Secrecy outage analysis for downlink transmissions in the presence of randomly located eavesdroppers. IEEE Trans. Inf. Forensics Secur. 2017, 12, 1195–1206. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Tang, Y.; Ghogho, M.; Wei, J.; Xiong, C. Secure communications via sending artificial noise by both transmitter and receiver: Optimum power allocation to minimise the insecure region. IET Commun. 2014, 8, 2858–2862. [Google Scholar] [CrossRef]
- Li, W.; Ghogho, M.; Chen, B.; Xiong, C. Secure communication via sending artificial noise by the receiver: Outage secrecy capacity/region analysis. IEEE Commun. Lett. 2012, 16, 1628–1631. [Google Scholar] [CrossRef]
- Zhou, Y.; Yeoh, P.L.; Chen, H.; Li, Y.; Schober, R.; Zhuo, L.; Vucetic, B. Improving physical layer security via a uav friendly jammer for unknown eavesdropper location. IEEE Trans. Veh. Technol. 2018, 67, 11280–11284. [Google Scholar] [CrossRef]
- Marina, N.; Hjorungnes, A. Characterization of the secrecy region of a single relay cooperative system. In Proceedings of the 2010 IEEE Wireless Communication and Networking Conference (WCNC), Sydney, Australia, 18–21 April 2010; pp. 1–6. [Google Scholar]
- Zheng, T.; Wang, H.; Yin, Q. On transmission secrecy outage of a multi-antenna system with randomly located eavesdroppers. IEEE Commun. Lett. 2014, 18, 1299–1302. [Google Scholar] [CrossRef]
- Mao, L.; Li, Y.; Li, T.; Gao, M.; Zhang, H. Security region analysis with artificial noise based on secrecy outage probability. In Proceedings of the 2018 IEEE Military Communications Conference (MILCOM), Los Angeles, CA, USA, 29–31 October 2018; pp. 336–340. [Google Scholar]
- Tugnait, J.K. Using artificial noise to improve detection performance for wireless user authentication in time-variant channels. IEEE Wirel. Commun. Lett. 2014, 3, 377–380. [Google Scholar] [CrossRef]
- Ju, H.; Oh, E.; Hong, D. Improving efficiency of resource usage in two-hop full duplex relay systems based on resource sharing and interference cancellation. IEEE Trans. Wirel. Commun. 2009, 8, 3933–3938. [Google Scholar]
- Krikidis, I.; Suraweera, H.A.; Smith, P.J.; Yuen, C. Full-Duplex Relay Selection for Amplify-and-Forward Cooperative Networks. IEEE Trans. Wirel. Commun. 2012, 11, 4381–4393. [Google Scholar] [CrossRef]
- Gerbracht, S.; Scheunert, C.; Jorswieck, E.A. Secrecy outage in MISO systems with partial channel information. IEEE Trans. Inf. Forensics Secur. 2012, 7, 704–716. [Google Scholar] [CrossRef]
- Yang, N.; Yan, S.; Yuan, J.; Malaney, R.; Subramanian, R.; Land, I. Artificial noise: Transmission optimization in multi-input single-output wiretap channels. IEEE Trans. Commun. 2015, 63, 1771–1783. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Tabel of Integrals, Series, and Products, 7th ed.; Academic Press: Cambridge, MA, USA, 2007. [Google Scholar]
Parameters | Values |
---|---|
Number of antennas in Alice | 4 |
Distance between Alice and Bob | 100 m |
Total transmission power P | 10 W |
Power allocation factor | 0.1 |
Jamming signal power | 15 dBm |
Secrecy transmission rate | 0.3 bps/Hz |
Threshold | 0.2 |
Path loss exponent | 2 |
Linear residual coefficient |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Xue, C.; Li, Y.; Dobre, O.A. Defending Against Randomly Located Eavesdroppers by Establishing a Protecting Region. Sensors 2020, 20, 438. https://doi.org/10.3390/s20020438
Li T, Xue C, Li Y, Dobre OA. Defending Against Randomly Located Eavesdroppers by Establishing a Protecting Region. Sensors. 2020; 20(2):438. https://doi.org/10.3390/s20020438
Chicago/Turabian StyleLi, Tao, Chaozheng Xue, Yongzhao Li, and Octavia A. Dobre. 2020. "Defending Against Randomly Located Eavesdroppers by Establishing a Protecting Region" Sensors 20, no. 2: 438. https://doi.org/10.3390/s20020438
APA StyleLi, T., Xue, C., Li, Y., & Dobre, O. A. (2020). Defending Against Randomly Located Eavesdroppers by Establishing a Protecting Region. Sensors, 20(2), 438. https://doi.org/10.3390/s20020438