Single Image Haze Removal from Image Enhancement Perspective for Real-Time Vision-Based Systems
Abstract
:1. Introduction
2. Preliminaries
2.1. Koschmieder Model
2.2. Pertinence of Under-Exposure to Haze Removal
3. Proposed Algorithm
3.1. Detail Enhancement
3.2. Gamma Correction
3.3. Weight Calculation and Normalization
3.4. Image Fusion
3.5. Dynamic Range Extension
4. Experiments
4.1. Experimental Setup
4.2. Qualitative Evaluation
4.3. Quantitative Evaluation
5. Real-Time Processing
5.1. Hardware Implementation
5.2. Synthesis and Comparison
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Adjabi, I.; Ouahabi, A.; Benzaoui, A.; Taleb-Ahmed, A. Past, Present, and Future of Face Recognition: A Review. Electronics 2020, 9, 1188. [Google Scholar] [CrossRef]
- Young, A.T. Rayleigh scattering. Appl. Opt. 1981, 20, 533–535. [Google Scholar] [CrossRef] [PubMed]
- Schechner, Y.; Narasimhan, S.; Nayar, S. Instant dehazing of images using polarization. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), Kauai, HI, USA, 8–14 December 2001; Volume 1, pp. I-325–I-332. [Google Scholar] [CrossRef] [Green Version]
- Narasimhan, S.; Nayar, S. Chromatic framework for vision in bad weather. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2000), Hilton Head Island, SC, USA, 15 June 2000; Volume 1, pp. 598–605. [Google Scholar] [CrossRef] [Green Version]
- Kopf, J.; Neubert, B.; Chen, B.; Cohen, M.; Cohen-Or, D.; Deussen, O.; Uyttendaele, M.; Lischinski, D. Deep photo: Model-based photograph enhancement and viewing. ACM Trans. Graph. 2008, 27, 116. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.; Shang, S. Visibility: How Applicable is the Century-Old Koschmieder Model? J. Atmos. Sci. 2016, 73, 4573–4581. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single Image Haze Removal Using Dark Channel Prior. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 2341–2353. [Google Scholar] [CrossRef] [PubMed]
- Levin, A.; Lischinski, D.; Weiss, Y. A Closed-Form Solution to Natural Image Matting. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 228–242. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Sun, J.; Tang, X. Guided Image Filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef]
- Gibson, K.B.; Vo, D.T.; Nguyen, T.Q. An Investigation of Dehazing Effects on Image and Video Coding. IEEE Trans. Image Process. 2012, 21, 662–673. [Google Scholar] [CrossRef]
- Lee, S.; Yun, S.; Nam, J.H.; Won, C.S.; Jung, S.W. A review on dark channel prior based image dehazing algorithms. EURASIP J. Image Video Process. 2016, 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Tang, G.; Zhang, X.; Jiang, J.; Tian, Q. Haze removal method for natural restoration of images with sky. Neurocomputing 2018, 275, 499–510. [Google Scholar] [CrossRef]
- Park, Y.; Kim, T.H. Fast Execution Schemes for Dark-Channel-Prior-Based Outdoor Video Dehazing. IEEE Access 2018, 6, 10003–10014. [Google Scholar] [CrossRef]
- Tufail, Z.; Khurshid, K.; Salman, A.; Fareed Nizami, I.; Khurshid, K.; Jeon, B. Improved Dark Channel Prior for Image Defogging Using RGB and YCbCr Color Space. IEEE Access 2018, 6, 32576–32587. [Google Scholar] [CrossRef]
- Kim, G.J.; Lee, S.; Kang, B. Single Image Haze Removal Using Hazy Particle Maps. Commun. Comput. Sci. 2018, 101, 1999–2002. [Google Scholar] [CrossRef]
- Peng, Y.T.; Lu, Z.; Cheng, F.C.; Zheng, Y.; Huang, S.C. Image Haze Removal Using Airlight White Correction, Local Light Filter, and Aerial Perspective Prior. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 1385–1395. [Google Scholar] [CrossRef]
- Ngo, D.; Lee, G.D.; Kang, B. A 4K-Capable FPGA Implementation of Single Image Haze Removal Using Hazy Particle Maps. Appl. Sci. 2019, 9, 3443. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Mai, J.; Shao, L. A Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior. IEEE Trans. Image Process. 2015, 24, 3522–3533. [Google Scholar] [CrossRef] [Green Version]
- Ngo, D.; Lee, G.D.; Kang, B. Improved Color Attenuation Prior for Single-Image Haze Removal. Appl. Sci. 2019, 9, 4011. [Google Scholar] [CrossRef] [Green Version]
- Tang, K.; Yang, J.; Wang, J. Investigating Haze-Relevant Features in a Learning Framework for Image Dehazing. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2995–3002. [Google Scholar] [CrossRef] [Green Version]
- Ngo, D.; Lee, S.; Kang, B. Robust Single-Image Haze Removal Using Optimal Transmission Map and Adaptive Atmospheric Light. Remote Sens. 2020, 12, 2233. [Google Scholar] [CrossRef]
- Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. DehazeNet: An End-to-End System for Single Image Haze Removal. IEEE Trans. Image Process. 2016, 25, 5187–5198. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Guo, J.; Porikli, F.; Fu, H.; Pang, Y. A Cascaded Convolutional Neural Network for Single Image Dehazing. IEEE Access 2018, 6, 24877–24887. [Google Scholar] [CrossRef]
- Yang, X.; Li, H.; Fan, Y.L.; Chen, R. Single Image Haze Removal via Region Detection Network. IEEE Trans. Multimedia 2019, 21, 2545–2560. [Google Scholar] [CrossRef]
- Golts, A.; Freedman, D.; Elad, M. Unsupervised Single Image Dehazing Using Dark Channel Prior Loss. IEEE Trans. Image Process. 2020, 29, 2692–2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, W.; Pan, J.; Zhang, H.; Cao, X.; Yang, M.H. Single Image Dehazing via Multi-scale Convolutional Neural Networks with Holistic Edges. Int. J. Comput. Vis. 2020, 128, 240–259. [Google Scholar] [CrossRef]
- Li, B.; Ren, W.; Fu, D.; Tao, D.; Feng, D.; Zeng, W.; Wang, Z. Benchmarking Single-Image Dehazing and Beyond. IEEE Trans. Image Process. 2019, 28, 492–505. [Google Scholar] [CrossRef] [Green Version]
- Ngo, D.; Kang, B. Preprocessing for High Quality Real-time Imaging Systems by Low-light Stretch Algorithm. J. Inst. Korean. Electr. Electron. Eng. 2018, 22, 585–589. [Google Scholar] [CrossRef]
- Polesel, A.; Ramponi, G.; Mathews, V. Image enhancement via adaptive unsharp masking. IEEE Trans. Image Process. 2000, 9, 505–510. [Google Scholar] [CrossRef] [Green Version]
- Ngo, D.; Kang, B. Image Detail Enhancement via Constant-Time Unsharp Masking. In Proceedings of the 2019 IEEE 21st Electronics Packaging Technology Conference (EPTC), Singapore, 4–6 December 2019; pp. 743–746. [Google Scholar] [CrossRef]
- Ngo, D.; Lee, S.; Kang, B. Nonlinear Unsharp Masking Algorithm. In Proceedings of the 2020 International Conference on Electronics, Information, and Communication (ICEIC), Barcelona, Spain, 19–20 January 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Sengee, N.; Sengee, A.; Choi, H.K. Image contrast enhancement using bi-histogram equalization with neighborhood metrics. IEEE Trans. Consum. Electron. 2010, 56, 2727–2734. [Google Scholar] [CrossRef]
- Tan, S.F.; Isa, N.A.M. Exposure Based Multi-Histogram Equalization Contrast Enhancement for Non-Uniform Illumination Images. IEEE Access 2019, 7, 70842–70861. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C. Single Image Dehazing by Multi-Scale Fusion. IEEE Trans. Image Process. 2013, 22, 3271–3282. [Google Scholar] [CrossRef]
- Choi, L.K.; You, J.; Bovik, A.C. Referenceless Prediction of Perceptual Fog Density and Perceptual Image Defogging. IEEE Trans. Image Process. 2015, 24, 3888–3901. [Google Scholar] [CrossRef]
- Galdran, A. Image dehazing by artificial multiple-exposure image fusion. Signal Process. 2018, 149, 135–147. [Google Scholar] [CrossRef]
- Mertens, T.; Kautz, J.; Reeth, F.V. Exposure Fusion. In Proceedings of the 15th Pacific Conference on Computer Graphics and Applications (PG’07), Maui, HI, USA, 29 October–2 November 2007; pp. 382–390. [Google Scholar] [CrossRef]
- Ancuti, C.; Ancuti, C.O.; De Vleeschouwer, C. D-HAZY: A dataset to evaluate quantitatively dehazing algorithms. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 2226–2230. [Google Scholar] [CrossRef]
- Tarel, J.P.; Hautiere, N.; Caraffa, L.; Cord, A.; Halmaoui, H.; Gruyer, D. Vision Enhancement in Homogeneous and Heterogeneous Fog. IEEE Intell. Transp. Syst. Mag. 2012, 4, 6–20. [Google Scholar] [CrossRef] [Green Version]
- Ancuti, C.O.; Ancuti, C.; Timofte, R.; De Vleeschouwer, C. O-HAZE: A Dehazing Benchmark with Real Hazy and Haze-Free Outdoor Images. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 867–8678. [Google Scholar] [CrossRef] [Green Version]
- Ancuti, C.O.; Ancuti, C.; Timofte, R.; De Vleeschouwer, C. I-HAZE: A dehazing benchmark with real hazy and haze-free indoor images. arXiv 2018, arXiv:1804.05091. [Google Scholar]
- Cho, H.; Kim, G.J.; Jang, K.; Lee, S.; Kang, B. Color Image Enhancement Based on Adaptive Nonlinear Curves of Luminance Features. J. Semicond. Technol. Sci. 2015, 15, 60–67. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeganeh, H.; Wang, Z. Objective Quality Assessment of Tone-Mapped Images. IEEE Trans. Image Process. 2013, 22, 657–667. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef] [Green Version]
- Zynq-7000 SoC Data Sheet: Overview (DS190). Available online: https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf (accessed on 12 May 2019).
- IEEE Standard for Verilog Hardware Description Language; IEEE Std 1364-2005; IEEE: Piscataway, NJ, USA, 2006; pp. 1–590. [CrossRef]
- Park, Y.; Kim, T.H. A video dehazing system based on fast airlight estimation. In Proceedings of the 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, QC, Canada, 14–16 November 2017; pp. 779–783. [Google Scholar] [CrossRef]
Dataset | Fusion Scheme | SSIM | TMQI | FSIMc |
---|---|---|---|---|
Multi-scale | 0.7431 | 0.6800 | 0.8002 | |
FRIDA2 | Single-scale | 0.7428 | 0.6795 | 0.8000 |
Difference (%) | 0.0404 | 0.0735 | 0.0250 | |
Multi-scale | 0.6799 | 0.8184 | 0.7551 | |
O-HAZE | Single-scale | 0.6768 | 0.8172 | 0.7529 |
Difference (%) | 0.4559 | 0.1466 | 0.2914 | |
Multi-scale | 0.7170 | 0.7397 | 0.8104 | |
I-HAZE | Single-scale | 0.7159 | 0.7389 | 0.8096 |
Difference (%) | 0.1534 | 0.1082 | 0.0987 |
Parameter | Description | Value |
---|---|---|
K | The number of under-exposed images | 4 |
Being used to control detail enhancement step | ||
Gamma values in gamma correction step |
Method | Haze Type | SSIM | TMQI | FSIMc |
---|---|---|---|---|
He et al. [7] | Homogeneous | 0.6653 | 0.7639 | 0.8168 |
Heterogeneous | 0.5374 | 0.6894 | 0.7251 | |
Cloudy Homogeneous | 0.5349 | 0.6849 | 0.7222 | |
Cloudy Heterogeneous | 0.6500 | 0.7781 | 0.8343 | |
Overall Average | 0.5969 | 0.7291 | 0.7746 | |
Zhu et al. [18] | Homogeneous | 0.5651 | 0.7533 | 0.7947 |
Heterogeneous | 0.5519 | 0.7254 | 0.7845 | |
Cloudy Homogeneous | 0.5310 | 0.7080 | 0.7764 | |
Cloudy Heterogeneous | 0.5412 | 0.7674 | 0.8117 | |
Overall Average | 0.5473 | 0.7385 | 0.7918 | |
Kim et al. [15] | Homogeneous | 0.5949 | 0.7320 | 0.8048 |
Heterogeneous | 0.6245 | 0.7037 | 0.7805 | |
Cloudy Homogeneous | 0.6124 | 0.7015 | 0.7751 | |
Cloudy Heterogeneous | 0.6078 | 0.7343 | 0.8135 | |
Overall Average | 0.6099 | 0.7179 | 0.7935 | |
Galdran [36] | Homogeneous | 0.7200 | 0.7397 | 0.7958 |
Heterogeneous | 0.7213 | 0.7436 | 0.7909 | |
Cloudy Homogeneous | 0.6921 | 0.7250 | 0.7800 | |
Cloudy Heterogeneous | 0.7595 | 0.7588 | 0.8183 | |
Overall Average | 0.7232 | 0.7418 | 0.7963 | |
Proposed Algorithm | Homogeneous | 0.7545 | 0.7295 | 0.8125 |
Heterogeneous | 0.7345 | 0.7204 | 0.7991 | |
Cloudy Homogeneous | 0.7423 | 0.7235 | 0.7963 | |
Cloudy Heterogeneous | 0.7278 | 0.7172 | 0.7902 | |
Overall Average | 0.7398 | 0.7227 | 0.7995 |
Dataset | Method | SSIM | TMQI | FSIMc |
---|---|---|---|---|
He et al. [7] | 0.7709 | 0.8403 | 0.8423 | |
Zhu et al. [18] | 0.6647 | 0.8118 | 0.7738 | |
O-HAZE | Kim et al. [15] | 0.4702 | 0.6509 | 0.6869 |
Galdran [36] | 0.7877 | 0.8401 | 0.8468 | |
Proposed Algorithm | 0.7753 | 0.8991 | 0.8350 | |
He et al. [7] | 0.6580 | 0.7319 | 0.8208 | |
Zhu et al. [18] | 0.6864 | 0.7512 | 0.8252 | |
I-HAZE | Kim et al. [15] | 0.6424 | 0.7026 | 0.7879 |
Galdran [36] | 0.7547 | 0.7613 | 0.8558 | |
Proposed Algorithm | 0.7779 | 0.8077 | 0.8583 |
Xilinx Design Analyzer | |||
---|---|---|---|
Device | xc7z045-2ffg900 | ||
Slice Logic Utilization | Available | Used | Utilization |
Slice Registers (#) | 437,200 | 30,676 | 7.02% |
Slice LUTs (#) | 218,600 | 36,357 | 16.63% |
Used as Memory (#) | 70,400 | 529 | 0.75% |
RAM36E1/FIFO36E1s | 545 | 48 | 8.81% |
Minimum Period | 4.120 ns | ||
Maximum Frequency | 242.718 MHz |
Video Resolution | Frame Size | Required Clock Cycles (#) | Processing Speed () | |
---|---|---|---|---|
Full HD (FHD) | 2,076,601 | 116 | ||
Quad HD (QHD) | 3,690,401 | 65 | ||
UW4K | 6,149,441 | 39 | ||
4K | UHD TV | 8,300,401 | 29 | |
DCI 4K | 8,853,617 | 27 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngo, D.; Lee, S.; Nguyen, Q.-H.; Ngo, T.M.; Lee, G.-D.; Kang, B. Single Image Haze Removal from Image Enhancement Perspective for Real-Time Vision-Based Systems. Sensors 2020, 20, 5170. https://doi.org/10.3390/s20185170
Ngo D, Lee S, Nguyen Q-H, Ngo TM, Lee G-D, Kang B. Single Image Haze Removal from Image Enhancement Perspective for Real-Time Vision-Based Systems. Sensors. 2020; 20(18):5170. https://doi.org/10.3390/s20185170
Chicago/Turabian StyleNgo, Dat, Seungmin Lee, Quoc-Hieu Nguyen, Tri Minh Ngo, Gi-Dong Lee, and Bongsoon Kang. 2020. "Single Image Haze Removal from Image Enhancement Perspective for Real-Time Vision-Based Systems" Sensors 20, no. 18: 5170. https://doi.org/10.3390/s20185170
APA StyleNgo, D., Lee, S., Nguyen, Q.-H., Ngo, T. M., Lee, G.-D., & Kang, B. (2020). Single Image Haze Removal from Image Enhancement Perspective for Real-Time Vision-Based Systems. Sensors, 20(18), 5170. https://doi.org/10.3390/s20185170