Swarm-Intelligence-Centric Routing Algorithm for Wireless Sensor Networks
Abstract
1. Introduction
2. Related Works
2.1. Relevant Routing Algorithm for WSN
2.2. ACO Algorithm
3. Proposed SICROA
3.1. Collision Avoidance through Interrupts (CATI)
Algorithm 1: Collision Avoidance through Interrupts |
[When node A receives a packet] |
if RREQ message in a packet |
if node A is in the interrupt state for battery or mobility |
ignore the packet |
else |
process the packet using the existing routing algorithm |
else if receive interrupt message for battery or mobility |
if the interrupt state is destined to node A |
initiate the route-discovery mechanism of the existing routing algorithm |
else |
forward the packet with the alternative route |
[At the end of a time interval (for lifetime & mobility)] |
if # of forwarding packets for the time interval ≥ threshold |
change the state to battery check or mobility check |
send a <Battery Check> or <Mobility Check> message to the source of last received packet |
if # of forwarding packets for the time interval < threshold |
change the state to normal |
3.2. Link-Quality Prediction and Maintenance
4. Performance Evaluation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, X.-S.; Karamanoglu, M. Swarm intelligence and bio-inspired computation: An overview. In Swarm Intelligence and Bio-inspired Computation; Yang, X.-S., Cui, Z., Xiao, R., Gandomi, A.H., Karamanoglu, M., Eds.; Elsevier: Oxford, UK, 2013; pp. 3–23. [Google Scholar]
- Saka, M.P.; Doğan, E.; Aydogdu, I. Analysis of swarm intelligence–based algorithms for constrained optimization. In Swarm Intelligence and Bio-inspired Computation; Yang, X.-S., Cui, Z., Xiao, R., Gandomi, A.H., Karamanoglu, M., Eds.; Elsevier: Oxford, UK, 2013; pp. 25–48. [Google Scholar]
- Caro, G.D.; Ducatelle, F.; Gambardella, L.M. Swarm intelligence for routing in mobile ad hoc networks. In Proceedings of the 2005 IEEE Swarm Intelligence Symposium, Pasadena, CA, USA, 8–10 June 2005; pp. 76–83. [Google Scholar]
- Lee, M.; Kim, H.; Yoe, H. Wireless sensor networks based on bio-inspired algorithms. In Computational Science and Its Applications—ICCSA 2018; Gervasi, O., Murgante, B., Misra, S., Stankova, E., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 719–725. [Google Scholar]
- Correia, F.; Vazão, T.; Lobo, V.J. Models for pheromone evaluation in ant systems for mobile ad-hoc networks. In Proceedings of the 2009 First International Conference on Emerging Network Intelligence, Sliema, Malta, 11–16 October 2009; pp. 85–90. [Google Scholar]
- Chiang, F.; Braun, R. A nature inspired multi-agent framework for autonomic service management in ubiquitous computing environments. In Proceedings of the 2005 ICSC Congress on Computational Intelligence Methods and Applications, Istanbul, Turkey, 15–17 December 2005; p. 5. [Google Scholar]
- Dorigo, M.; Blum, C. Ant colony optimization theory: A survey. Theor. Comput. Sci. 2005, 344, 243–278. [Google Scholar] [CrossRef]
- Mohan, B.C.; Baskaran, R. A survey: Ant colony optimization based recent research and implementation on several engineering domain. Expert Syst. Appl. 2012, 39, 4618–4627. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Liu, W.; Sangaiah, A.K.; Kim, H.-J. Energy efficient routing algorithm with mobile sink support for wireless sensor networks. Sensors 2019, 19, 1494. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gu, X.; Liu, W.; Sangaiah, A.K.; Kim, H.-J. An empower Hamilton loop based data collection algorithm with mobile agent for WSNs. Hum. Cent. Comput. Inf. Sci. 2019, 9, 18. [Google Scholar] [CrossRef]
- Falaghi, H.; Haghifam, M.-R. ACO based algorithm for distributed generation sources allocation and sizing in distribution systems. In Proceedings of the 2007 IEEE Lausanne Power Tech, Lausanne, Switzerland, 1–5 July 2007; pp. 555–560. [Google Scholar]
- Cai, W.; Jin, X.; Zhang, Y.; Chen, K.; Wang, R. ACO based QOS routing algorithm for wireless sensor networks. In Proceedings of the International Conference on Ubiquitous Intelligence and Computing, Wuhan, China, 3–6 September 2006; pp. 419–428. [Google Scholar]
- Okdem, S.; Karaboga, D. Routing in wireless sensor networks using an ant colony optimization (ACO) router chip. Sensors 2009, 9, 909–921. [Google Scholar] [CrossRef] [PubMed]
- Pantazis, N.A.; Nikolidakis, S.A.; Vergados, D.D. Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Commun. Surv. Tutor. 2012, 2, 551–591. [Google Scholar] [CrossRef]
- Al-Karaki, J.N.; Kamal, A.E. Routing techniques in wireless sensor networks: A survey. IEEE Wirel. Commun. 2004, 6, 6–28. [Google Scholar] [CrossRef]
- Krishnamachari, B.; Estrin, D.; Wicker, S.B. The impact of data aggregation in wireless sensor networks. In Proceedings of the 22nd International Conference on Distributed Computing Systems workshops, Vienna, Austria, 2 July 2002; pp. 575–578. [Google Scholar]
- Krishnamachari, B.; Estrin, D.; Wicker, S. Modelling data-centric routing in wireless sensor networks. IEEE Infocom. 2002, 2, 39–44. [Google Scholar]
- Kim, S.; Lee, M.; Shin, C. IoT-based strawberry disease prediction system for smart farming. Sensors 2018, 18, 4051. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Yoe, H. Analysis of environmental stress factors using an artificial growth system and plant fitness optimization. BioMed Res. Int. 2015, 2015, 6. [Google Scholar] [CrossRef]
- Azni, A.; Saudi, M.M.; Azman, A.; Johari, A.S. Performance analysis of routing protocol for WSN using data centric approach. World Acad. Sci. Eng. Technol. 2009, 3, 1092–1095. [Google Scholar]
- Seah, W.K.; Eu, Z.A.; Tan, H.-P. Wireless sensor networks powered by ambient energy harvesting (wsn-heap)-survey and challenges. In Proceedings of the 2009 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace and Electronic Systems Technology, Aalborg, Denmark, 17–20 May 2009; pp. 1–5. [Google Scholar]
- Rault, T.; Bouabdallah, A.; Challal, Y. Energy efficiency in wireless sensor networks: A top-down survey. Comput. Netw. 2014, 67, 104–122. [Google Scholar] [CrossRef]
- Saleem, M.; Di Caro, G.A.; Farooq, M. Swarm intelligence-based routing protocol for wireless sensor networks: Survey and future directions. Inf. Sci. 2011, 181, 4597–4624. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Wang, K.; Sangaiah, A.K.; Lim, S.-J. An affinity propagation-based self-adaptive clustering method for wireless sensor networks. Sensors 2019, 19, 2579. [Google Scholar] [CrossRef]
- Dorigo, M.; Stützle, T. Ant colony optimization: Overview and recent advances. In Handbook of metaheuristics; Springer: Cham, Switzerland, 2019; Volume 272, pp. 311–351. [Google Scholar]
- Blum, C. Ant colony optimization: Introduction and recent trends. Phys. Life Rev. 2005, 2, 353–373. [Google Scholar] [CrossRef]
- Bell, J.E.; McMullen, P.R. Ant colony optimization techniques for the vehicle routing problem. Adv. Eng. Inf. 2004, 18, 41–48. [Google Scholar] [CrossRef]
- Sim, K.M.; Sun, W.H. Ant colony optimization for routing and load-balancing: Survey and new directions. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 2003, 33, 560–572. [Google Scholar]
- Ding, N.; Liu, P.X. Data gathering communication in wireless sensor networks using ant colony optimization. In Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, Shenyang, China, 22–26 August 2004; pp. 822–827. [Google Scholar]
- Wang, J.; Osagie, E.; Thulasiraman, P.; Thulasiram, R.K. Hopnet: A hybrid ant colony optimization routing algorithm for mobile ad hoc network. Ad Hoc Netw. 2009, 7, 690–705. [Google Scholar] [CrossRef]
- Singh, G.; Kumar, N.; Verma, A.K. Ant colony algorithms in MANETs: A review. J. Netw. Comput. Appl. 2012, 35, 1964–1972. [Google Scholar] [CrossRef]
- Lee, M.; Yoe, H. WiBiA: Wireless sensor networks based on biomimicry algorithms. Int. J. Comput. Intell. Syst. 2019, 12, 1212–1220. [Google Scholar] [CrossRef]
- Perkins, C.E.; Royer, E.M. Ad-hoc on-demand distance vector routing. In Proceedings of the WMCSA’99 Second IEEE Workshop on Mobile Computing Systems and Applications, New Orleans, LA, USA, 25–26 February 1999; pp. 90–100. [Google Scholar]
- Maltz, D.A.; Broch, J.; Johnson, D.; Hu, Y.-C.; Jetcheva, J. A performance comparison of multi-hop wireless ad hoc network routing protocols. In Proceedings of the 4th Annual ACM/IEEE International Conference on Mobile Computing and Networking, New York, NY, USA, 25 October 1998; pp. 85–97. [Google Scholar]
- Akyildiz, I.F.; Wang, X.; Wang, W. Wireless mesh networks: A survey. Comput. Netw. 2005, 47, 445–487. [Google Scholar] [CrossRef]
- Abolhasan, M.; Wysocki, T.; Dutkiewicz, E. A review of routing protocols for mobile ad hoc networks. Ad Hoc Netw. 2004, 2, 1–22. [Google Scholar] [CrossRef]
- Ad Hoc On-Demand Distance Vector (AODV) Routing. Available online: https://www.rfc-editor.org/info/rfc3561 (accessed on 1 September 2020).
- Issariyakul, T.; Hossain, E. Introduction to network simulator 2 (NS2); Springer: Boston, MA, USA, 2012; pp. 21–40. [Google Scholar]
- The Dynamic Source Routing Protocol (DSR) for Mobile ad Hoc Networks for IPV4. Available online: https://tools.ietf.org/html/rfc4728 (accessed on 1 September 2020).
- Wang, J.; Gao, Y.; Yin, X.; Li, F.; Kim, H.-J. An enhanced PEGASIS algorithm with mobile sink support for wireless sensor networks. Wirel. Commun. Mob. Comput. 2018, 2018, 9472075. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, C.; Lee, M. Swarm-Intelligence-Centric Routing Algorithm for Wireless Sensor Networks. Sensors 2020, 20, 5164. https://doi.org/10.3390/s20185164
Shin C, Lee M. Swarm-Intelligence-Centric Routing Algorithm for Wireless Sensor Networks. Sensors. 2020; 20(18):5164. https://doi.org/10.3390/s20185164
Chicago/Turabian StyleShin, Changsun, and Meonghun Lee. 2020. "Swarm-Intelligence-Centric Routing Algorithm for Wireless Sensor Networks" Sensors 20, no. 18: 5164. https://doi.org/10.3390/s20185164
APA StyleShin, C., & Lee, M. (2020). Swarm-Intelligence-Centric Routing Algorithm for Wireless Sensor Networks. Sensors, 20(18), 5164. https://doi.org/10.3390/s20185164