Silicone Rubber Based Highly Sensitive Fiber-Optic Fabry–Perot Interferometric Gas Pressure Sensor
Abstract
:1. Introduction
2. Sensing Principle and Fabrication
2.1. FPI Sensing Principle
2.2. Fabrication of Sensor
3. Experiments and Results
3.1. Experimental Procedure
3.2. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, W.P.; Wang, D.N.; Xu, B.; Zhao, C.L.; Chen, H.F. Multimode fiber tip fabry-perot cavity for highly sensitive pressure measurement. Sci. Rep. 2017, 7, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, B.; Wang, Y.; Qu, J.; Liao, C.; Yin, G.; He, J.; Zhou, J.; Tang, J.; Liu, S.; Li, Z.; et al. Simultaneous measurement of pressure and temperature by employing fabry-perot interferometer based on pendant polymer droplet. Opt. Express 2015, 23, 1906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poeggel, S.; Tosi, D.; Duraibabu, D.; Leen, G.; McGrath, D.; Lewis, E. Optical fibre pressure sensors in medical applications. Sensors 2015, 15, 17115–17148. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Ouyang, X.; Wu, J.; Zhang, A.P.; Tam, H.Y.; Wai, P.K.A. Optical fiber-tip sensors based on in-situ μ-printed polymer suspended-microbeams. Sensors 2018, 18, 1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, H.; Jia, P.; Liu, J.; Fang, G.; Li, Z.; Hong, Y.; Liang, T.; Xiong, J. Diaphragm-free fiber-optic fabry-perot interferometric gas pressure sensor for high temperature application. Sensors 2018, 18, 1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, H.; Jiang, Y.; Zhang, L.; Cui, Y.; Jiang, Y.; Jia, J.; Jiang, L. Antiresonant mechanism based self-temperature-calibrated fiber optic fabry–perot gas pressure sensors. Opt. Express 2019, 27, 22181. [Google Scholar] [CrossRef] [PubMed]
- Domingues, M.F.; Rodriguez, C.A.; Martins, J.; Tavares, C.; Marques, C.; Alberto, N.; André, P.; Antunes, P. Cost-effective optical fiber pressure sensor based on intrinsic Fabry-Perot interferometric micro-cavities. Opt. Fiber Technol. 2018, 42, 56–62. [Google Scholar] [CrossRef]
- Tang, J.; Yin, G.; Liao, C.; Liu, S.; Li, Z.; Zhong, X.; Wang, Q.; Zhao, J.; Yang, K.; Wang, Y.; et al. High-sensitivity gas pressure sensor based on fabry-pérot interferometer with a side-opened channel in hollow-core photonic bandgap fiber. IEEE Photonics J. 2015, 7, 1–7. [Google Scholar]
- Fu, T.W.; Yang, Y.J.; Lin, J.H.; Yeh, T.Y.; Han, P.; Lee, C.L. A polymer-coated hollow core fiber fabry-pérot interferometer for sensing liquid level. In Proceedings of the 2016 21st OptoElectronics and Communications Conference, OECC 2016-Held Jointly with the 2016 International Conference on Photonics in Switching, Niigata, Japan, 3–7 July 2016; Volume 3, pp. 1–3. [Google Scholar]
- Hill, G.C.; Melamud, R.; Declercq, F.E.; Davenport, A.A.; Chan, I.H.; Hartwell, P.G.; Pruitt, B.L. SU-8 MEMS fabry-perot pressure sensor. Sens. Actuators A Phys. 2007, 138, 52–62. [Google Scholar] [CrossRef]
- Ma, J.; Jin, W.; Ho, H.L.; Dai, J.Y. High-sensitivity fiber-tip pressure sensor with graphene diaphragm. Opt. Lett. 2012, 37, 2493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Wei, N.; Zheng, Y. Mechanical properties of highly defective graphene: From brittle rupture to ductile fracture. Nanotechnology 2013, 24, 505703. [Google Scholar] [CrossRef] [PubMed]
- Mohanan, P.V.; Rathinam, K. Biocompatibility studies on silicone rubber. In Proceedings of the IEEE/Engineering in Medicine and Biology Society Annual Conference, New Delhi, India, 15–18 February 1995; pp. 11–12. [Google Scholar]
- Takarada, T.; Kawahara, M.; Irifune, M.; Endo, C.; Shimizu, Y.; Kobayashi, K.; Sakata, K.; Kikuchi, N.; Saida, T.; Onizuka, C.; et al. An alternative approach to the monitoring of respiration by dynamic air-pressure sensor. Anesth. Prog. 2007, 54, 2–6. [Google Scholar] [CrossRef]
- Young-Modulus. Available online: https://omnexus.specialchem.com/polymer-properties/properties/young-modulus (accessed on 3 July 2020).
- Luo, C.; Liu, X.; Liu, J.; Shen, J.; Li, H.; Zhang, S.; Hu, J.; Zhang, Q.; Wang, G.; Huang, M. An Optimized PDMS Thin Film Immersed Fabry-Perot Fiber Optic Pressure Sensor for Sensitivity Enhancement. Coatings 2019, 9, 290. [Google Scholar] [CrossRef] [Green Version]
- Xiao, G.Z.; Adnet, A.; Zhang, Z.; Lu, Z.; Grover, C.P. Fiber-optic Fabry-Perot interferometric gas-pressure sensors embedded in pressure fittings. Microw. Opt. Technol. Lett. 2004, 42, 486–489. [Google Scholar] [CrossRef]
- Wang, R.; Qiao, X. Intrinsic fabry-pérot interferometer based on concave well on fiber end. IEEE Photonics Technol. Lett. 2014, 26, 1430–1433. [Google Scholar] [CrossRef]
- Wang, R.; Huang, P.; He, J.; Qiao, X. Gas refractometer based on a side-open fiber optic fabry–perot interferometer. Appl. Opt. 2017, 56, 50. [Google Scholar] [CrossRef]
- Xu, B.; Wang, C.; Wang, D.N.; Liu, Y.; Li, Y. Fiber-tip gas pressure sensor based on dual capillaries. Opt. Express 2015, 23, 23484. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liao, C.; Tang, J.; Bai, Z.; Guo, K.; Hou, M.; He, J.; Wang, Y.; Wang, Y.; Liu, S.; et al. High-sensitivity gas-pressure sensor based on fiber-tip PVC diaphragm fabry-pérot interferometer. J. Light. Technol. 2017, 35, 4067–4071. [Google Scholar] [CrossRef]
- Guo, Z.; Lv, W.; Wang, W.; Chen, Q.; Zhang, X.; Chen, H.; Ma, Z. Absolute single cavity length interrogation of fiber-optic compound fabry–perot pressure sensors through a white light non-scanning correlation method. Sensors 2019, 19, 1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
FPI Structure | Sensitivity |
---|---|
FPI embedded in pressure fitting [17] | 0.24 nm/MPa |
Pendant polymer droplet-based FPI [2] | 1.13 nm/MPa |
FPI based on concave well on fiber end [18] | 1.53 nm/MPa |
FPI with open cavity [19] | 2.46 nm/MPa |
FPI based on dual capillaries [20] | 4.15 nm/MPa |
Hollow-core bandgap fiber with a side opened channel FPI [8] | 4.24 nm/MPa |
PVC-diaphragm based FPI [21] | 65.5 nm/MPa |
FPI sensor based on cavity length measurement [22] | 0.42 nm/kPa |
Silicone rubber-diaphragm based FPI | −680 nm/MPa |
(−0.68 nm/kPa) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Dash, J.N.; Gunawardena, D.S.; Htein, L.; Tam, H.-Y. Silicone Rubber Based Highly Sensitive Fiber-Optic Fabry–Perot Interferometric Gas Pressure Sensor. Sensors 2020, 20, 4927. https://doi.org/10.3390/s20174927
Cheng X, Dash JN, Gunawardena DS, Htein L, Tam H-Y. Silicone Rubber Based Highly Sensitive Fiber-Optic Fabry–Perot Interferometric Gas Pressure Sensor. Sensors. 2020; 20(17):4927. https://doi.org/10.3390/s20174927
Chicago/Turabian StyleCheng, Xin, Jitendra Narayan Dash, Dinusha Serandi Gunawardena, Lin Htein, and Hwa-Yaw Tam. 2020. "Silicone Rubber Based Highly Sensitive Fiber-Optic Fabry–Perot Interferometric Gas Pressure Sensor" Sensors 20, no. 17: 4927. https://doi.org/10.3390/s20174927
APA StyleCheng, X., Dash, J. N., Gunawardena, D. S., Htein, L., & Tam, H.-Y. (2020). Silicone Rubber Based Highly Sensitive Fiber-Optic Fabry–Perot Interferometric Gas Pressure Sensor. Sensors, 20(17), 4927. https://doi.org/10.3390/s20174927