Next Article in Journal
Photonic Voltage Transducer with Lightning Impulse Protection for Distributed Monitoring of MV Networks
Next Article in Special Issue
Identification of Multi-Class Drugs Based on Near Infrared Spectroscopy and Bidirectional Generative Adversarial Networks
Previous Article in Journal
Security in IoMT Communications: A Survey
sensors-logo
Article Menu

Article Menu

Article

Quantitative Long-Term Monitoring of the Circulating Gases in the KATRIN Experiment Using Raman Spectroscopy

by 1, 2,3, 4, 5,6, 7, 1, 8, 9, 5, 1, 6, 8, 2,10, 11,12, 4, 5, 13, 14, 5, 5, 15, 16, 5, 8, 2,10, 6, 14, 6, 15, 8, 6, 17, 6, 18, 5, 8, 8, 6, 6, 1, 6, 8, 14, 14, 5, 5, 1, 6, 6, 2,10, 5, 6, 2,10, 5, 15, 5, 2,10, 6, 4, 5, 16, 1, 6, 5, 3, 1, 16, 19, 8, 5, 6, 1, 11,12, 2,10, 1, 2,10, 6, 1, 8, 20, 18, 19, 13, 1, 8, 1, 1,5,6, 15, 8, 16, 8, 21, 1, 2,10, 5, 6, 1,*, 2,10, 6, 21, 16, 5, 17, 2,10, 2,10, 6, 6, 1, 15, 13,*, 18, 6, 7, 7, 16, 6, 18, 4, 8, 22, 1, 1, 11,12, 5, 4, 17, 18, 7 and 1add Show full author list remove Hide full author list
1
Tritium Laboratory Karlsruhe (TLK), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
2
Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
3
IRFU (DPhP & APC), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
4
Institute for Data Processing and Electronics (IPE), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
5
Institute of Experimental Particle Physics (ETP), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
6
Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
7
Institute for Nuclear Research of Russian Academy of Sciences, 60th October Anniversary Prospect 7a, 117312 Moscow, Russia
8
Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
9
Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
10
Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany
11
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599, USA
12
Triangle Universities Nuclear Laboratory, Durham, NC 27708, USA
13
Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
14
Department of Physics, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
15
Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195, USA
16
Nuclear Physics Institute of the CAS, v.v.i., CZ-250 68 Husinec—Řež, Czech Republic
17
Laboratory for Nuclear Science, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
18
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
19
Institute for Nuclear and Particle Astrophysics and Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
20
Department of Electrical Engineering and Information Technology, University of Applied Sciences (HFD) Fulda, Leipziger Str. 123, 36037 Fulda, Germany
21
Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany
22
Project, Process, and Quality Management (PPQ), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
*
Authors to whom correspondence should be addressed.
Sensors 2020, 20(17), 4827; https://doi.org/10.3390/s20174827
Received: 18 July 2020 / Revised: 18 August 2020 / Accepted: 23 August 2020 / Published: 26 August 2020
The Karlsruhe Tritium Neutrino (KATRIN) experiment aims at measuring the effective electron neutrino mass with a sensitivity of 0.2 eV/c2, i.e., improving on previous measurements by an order of magnitude. Neutrino mass data taking with KATRIN commenced in early 2019, and after only a few weeks of data recording, analysis of these data showed the success of KATRIN, improving on the known neutrino mass limit by a factor of about two. This success very much could be ascribed to the fact that most of the system components met, or even surpassed, the required specifications during long-term operation. Here, we report on the performance of the laser Raman (LARA) monitoring system which provides continuous high-precision information on the gas composition injected into the experiment’s windowless gaseous tritium source (WGTS), specifically on its isotopic purity of tritium—one of the key parameters required in the derivation of the electron neutrino mass. The concentrations cx for all six hydrogen isotopologues were monitored simultaneously, with a measurement precision for individual components of the order 10−3 or better throughout the complete KATRIN data taking campaigns to date. From these, the tritium purity, εT, is derived with precision of <10−3 and trueness of <3 × 10−3, being within and surpassing the actual requirements for KATRIN, respectively. View Full-Text
Keywords: Raman spectroscopy; tritium; gas composition monitoring; KATRIN Raman spectroscopy; tritium; gas composition monitoring; KATRIN
Show Figures

Figure 1

MDPI and ACS Style

Aker, M.; Altenmüller, K.; Beglarian, A.; Behrens, J.; Berlev, A.; Besserer, U.; Bieringer, B.; Blaum, K.; Block, F.; Bornschein, B.; Bornschein, L.; Böttcher, M.; Brunst, T.; Caldwell, T.C.; Chilingaryan, S.; Choi, W.; Díaz Barrero, D.D.; Debowski, K.; Deffert, M.; Descher, M.; Doe, P.J.; Dragoun, O.; Drexlin, G.; Dyba, S.; Edzards, F.; Eitel, K.; Ellinger, E.; Engel, R.; Enomoto, S.; Fedkevych, M.; Felden, A.; Formaggio, J.F.; Fränkle, F.; Franklin, G.B.; Friedel, F.; Fulst, A.; Gauda, K.; Gil, W.; Glück, F.; Größle, R.; Gumbsheimer, R.; Hannen, V.; Haußmann, N.; Helbing, K.; Hickford, S.; Hiller, R.; Hillesheimer, D.; Hinz, D.; Höhn, T.; Houdy, T.; Huber, A.; Jansen, A.; Karl, C.; Kellerer, J.; Kippenbrock, L.; Klein, M.; Köhler, C.; Köllenberger, L.; Kopmann, A.; Korzeczek, M.; Kovalík, A.; Krasch, B.; Krause, H.; La Cascio, L.; Lasserre, T.; Le, T.-L.; Lebeda, O.; Lehnert, B.; Lokhov, A.; Machatschek, M.; Malcherek, E.; Marsteller, A.; Martin, E.L.; Meier, M.; Melzer, C.; Mertens, S.; Müller, K.; Niemes, S.; Oelpmann, P.; Osipowicz, A.; Parno, D.S.; Poon, A.W.P.; Lopez Poyato, J.M.; Priester, F.; Rest, O.; Röllig, M.; Röttele, C.; Robertson, R.G.H.; Rodenbeck, C.; Ryšavỳ, M.; Sack, R.; Saenz, A.; Schäfer, P.; Schaller, A.; Schimpf, L.; Schlösser, K.; Schlösser, M.; Schlüter, L.; Schrank, M.; Schulz, B.; Sefčík, M.; Seitz-Moskaliuk, H.; Sibille, V.; Siegmann, D.; Slezák, M.; Spanier, F.; Steidl, M.; Sturm, M.; Sun, M.; Telle, H.H.; Thorne, L.A.; Thümmler, T.; Titov, N.; Tkachev, I.; Vénos, D.; Valerius, K.; Vizcaya Hernández, A.P.; Weber, M.; Weinheimer, C.; Weiss, C.; Welte, S.; Wendel, J.; Wilkerson, J.F.; Wolf, J.; Wüstling, S.; Xu, W.; Yen, Y.-R.; Zadoroghny, S.; Zeller, G. Quantitative Long-Term Monitoring of the Circulating Gases in the KATRIN Experiment Using Raman Spectroscopy. Sensors 2020, 20, 4827. https://doi.org/10.3390/s20174827

AMA Style

Aker M, Altenmüller K, Beglarian A, Behrens J, Berlev A, Besserer U, Bieringer B, Blaum K, Block F, Bornschein B, Bornschein L, Böttcher M, Brunst T, Caldwell TC, Chilingaryan S, Choi W, Díaz Barrero DD, Debowski K, Deffert M, Descher M, Doe PJ, Dragoun O, Drexlin G, Dyba S, Edzards F, Eitel K, Ellinger E, Engel R, Enomoto S, Fedkevych M, Felden A, Formaggio JF, Fränkle F, Franklin GB, Friedel F, Fulst A, Gauda K, Gil W, Glück F, Größle R, Gumbsheimer R, Hannen V, Haußmann N, Helbing K, Hickford S, Hiller R, Hillesheimer D, Hinz D, Höhn T, Houdy T, Huber A, Jansen A, Karl C, Kellerer J, Kippenbrock L, Klein M, Köhler C, Köllenberger L, Kopmann A, Korzeczek M, Kovalík A, Krasch B, Krause H, La Cascio L, Lasserre T, Le T-L, Lebeda O, Lehnert B, Lokhov A, Machatschek M, Malcherek E, Marsteller A, Martin EL, Meier M, Melzer C, Mertens S, Müller K, Niemes S, Oelpmann P, Osipowicz A, Parno DS, Poon AWP, Lopez Poyato JM, Priester F, Rest O, Röllig M, Röttele C, Robertson RGH, Rodenbeck C, Ryšavỳ M, Sack R, Saenz A, Schäfer P, Schaller A, Schimpf L, Schlösser K, Schlösser M, Schlüter L, Schrank M, Schulz B, Sefčík M, Seitz-Moskaliuk H, Sibille V, Siegmann D, Slezák M, Spanier F, Steidl M, Sturm M, Sun M, Telle HH, Thorne LA, Thümmler T, Titov N, Tkachev I, Vénos D, Valerius K, Vizcaya Hernández AP, Weber M, Weinheimer C, Weiss C, Welte S, Wendel J, Wilkerson JF, Wolf J, Wüstling S, Xu W, Yen Y-R, Zadoroghny S, Zeller G. Quantitative Long-Term Monitoring of the Circulating Gases in the KATRIN Experiment Using Raman Spectroscopy. Sensors. 2020; 20(17):4827. https://doi.org/10.3390/s20174827

Chicago/Turabian Style

Aker, Max, Konrad Altenmüller, Armen Beglarian, Jan Behrens, Anatoly Berlev, Uwe Besserer, Benedikt Bieringer, Klaus Blaum, Fabian Block, Beate Bornschein, Lutz Bornschein, Matthias Böttcher, Tim Brunst, Thomas C. Caldwell, Suren Chilingaryan, Wonqook Choi, Deseada D. Díaz Barrero, Karol Debowski, Marco Deffert, Martin Descher, Peter J. Doe, Otokar Dragoun, Guido Drexlin, Stephan Dyba, Frank Edzards, Klaus Eitel, Enrico Ellinger, Ralph Engel, Sanshiro Enomoto, Mariia Fedkevych, Arne Felden, Joseph F. Formaggio, Florian Fränkle, Gregg B. Franklin, Fabian Friedel, Alexander Fulst, Kevin Gauda, Woosik Gil, Ferenc Glück, Robin Größle, Rainer Gumbsheimer, Volker Hannen, Norman Haußmann, Klaus Helbing, Stephanie Hickford, Roman Hiller, David Hillesheimer, Dominic Hinz, Thomas Höhn, Thibaut Houdy, Anton Huber, Alexander Jansen, Christian Karl, Jonas Kellerer, Luke Kippenbrock, Manuel Klein, Christoph Köhler, Leonard Köllenberger, Andreas Kopmann, Marc Korzeczek, Alojz Kovalík, Bennet Krasch, Holger Krause, Luisa La Cascio, Thierry Lasserre, Thanh-Long Le, Ondřej Lebeda, Bjoern Lehnert, Alexey Lokhov, Moritz Machatschek, Emma Malcherek, Alexander Marsteller, Eric L. Martin, Matthias Meier, Christin Melzer, Susanne Mertens, Klaus Müller, Simon Niemes, Patrick Oelpmann, Alexander Osipowicz, Diana S. Parno, Alan W.P. Poon, Jose M. Lopez Poyato, Florian Priester, Oliver Rest, Marco Röllig, Carsten Röttele, R.G. H. Robertson, Caroline Rodenbeck, Milos Ryšavỳ, Rudolf Sack, Alejandro Saenz, Peter Schäfer, Anna Schaller, Lutz Schimpf, Klaus Schlösser, Magnus Schlösser, Lisa Schlüter, Michael Schrank, Bruno Schulz, Michal Sefčík, Hendrik Seitz-Moskaliuk, Valérian Sibille, Daniel Siegmann, Martin Slezák, Felix Spanier, Markus Steidl, Michael Sturm, Menglei Sun, Helmut H. Telle, Larisa A. Thorne, Thomas Thümmler, Nikita Titov, Igor Tkachev, Drahoš Vénos, Kathrin Valerius, Ana P. Vizcaya Hernández, Marc Weber, Christian Weinheimer, Christiane Weiss, Stefan Welte, Jürgen Wendel, John F. Wilkerson, Joachim Wolf, Sascha Wüstling, Weiran Xu, Yung-Ruey Yen, Sergey Zadoroghny, and Genrich Zeller. 2020. "Quantitative Long-Term Monitoring of the Circulating Gases in the KATRIN Experiment Using Raman Spectroscopy" Sensors 20, no. 17: 4827. https://doi.org/10.3390/s20174827

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop