Electrochemical Biosensors Based on Nanomaterials for Early Detection of Alzheimer’s Disease
Abstract
:1. Introduction
2. Biomarkers for Alzheimer’s Disease
3. Electrochemical Biosensors: The Role of Nanomaterials
3.1. General Overview
3.2. The Role of Nanomaterials
4. Electrochemical Biosensors for Alzheimer’s Disease Diagnostics
4.1. DNA and RNA Biomarkers
4.1.1. Nanomaterials as Electrode Modifiers
4.1.2. Nanomaterials as Labels
4.2. Peptide Biomarkers
4.2.1. Nanomaterials as Electrode Modifiers
- Gold nanoparticles
- Carbon nanotubes
- Nanomembranes
- Nickel ferrite nanoparticles (NiFe2O4)
4.2.2. Nanomaterials as Labels
- Gold nanoparticles
- Silver nanoparticles
- Metal-organic frameworks (MOFs)
4.3. Protein Biomarkers
4.3.1. Nanomaterials as Electrode Modifiers
- Gold nanoparticles
- Carbon nanotubes
4.3.2. Nanomaterials as Labels
- Gold nanoparticles
- Metal-organic frameworks
- Cerium oxide nanoparticles
- Quantum dots
- Iridium oxide nanoparticles (IrO2 NPs)
4.4. Neurotransmitter Biomarkers
4.5. Oxidative Stress Biomarkers
4.6. Multianalyte Detection
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
3D | Three-dimensional |
AA | Ascorbic acid |
Aβ | Amyloid β |
Aβf | Amyloid β fibrils |
Aβo | Amyloid β oligomers |
Ach | Acetylcholine |
AD | Alzheimer’s disease |
ADI | Alzheimer’s disease international |
AFM | Atomic force microscopy |
AgNPs | Silver nanoparticles |
APP | Amyloid precursor protein |
AuNPs | Gold nanoparticles |
CA | Chronoamperometry |
CeNPs | Cerium oxide nanoparticles |
CNTs | Carbon nanotubes |
CSF | Cerebrospinal fluid |
CV | Cyclic voltammetry |
DA | Dopamine |
DES | Deep eutectic solvents |
DNA | Deoxyribonucleic acid |
DPV | Differential pulse voltammetry |
EDC | 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide |
ELISA | Enzyme linked immunosorbent assay |
FBS | Fetal bovine serum |
FISH | Fluorescence in situ hybridization |
G8 | Group of eight inter-governmental political forum |
GCE | Glassy carbon electrode |
GDP | Gross domestic product |
GO | Graphene oxide |
HER | Hydrogen evolution reaction |
HRP | Horseradish peroxidase |
IrO2NPs | Iridium oxide nanoparticles |
ITO | Indium tin oxide |
LOD | Limit of detection |
LSV | Linear sweep voltammetry |
MAPT | Microtubule-associated protein Tau |
MCH | 6-mercapto-1-hexanol |
MCI | Mild cognitive impairment |
MIPs | Molecular imprinted polymer |
miRNAs | microRNAs |
MHDA | 16-mercaptohexadecanoic acid |
MOFs | Metal-organic frameworks |
MRI | Magnetic resonance imaging |
mRNA | Messenger RNA |
MWCNTs | Multi-walled carbon nanotubes |
NE | Norepinephrine |
NFTs | Neurofibrillary tangles |
NiFe2O4 | Nickel ferrites |
NIR | Near infrared |
NKB | Neurokinin B |
NHS | N-hydroxysuccinimide |
OECT | Organic electrochemical transistors |
PBS | Phosphate buffer saline |
PCR | Polymerase chain reaction |
PEI | Polyethyleneimine |
PET | Positron emission tomography |
PHFs | Pair helical filaments |
POC | Point-of-care |
PrPc | Cellular prion protein |
QDs | Quantum dots |
rGO | Reduced graphene oxide |
RNA | Ribonucleic acid |
ROS | Reactive oxygen species |
RSD | Relative standard deviation |
SAM | Self-assembled monolayer |
SELEX | Selective evolution of ligands by exponential enrichment |
SEM | Scanning electron microscopy |
SPCEs | Screen-printed carbon electrodes |
ssDNA | Single-stranded DNA |
SWCNTs | Single-walled carbon nanotubes |
SWV | Square wave voltammetry |
TDP-43 | TAR DNA-binding protein 43 |
UA | Uric acid |
WHO | World health organization |
WOR | Water oxidation reaction |
References
- Scheltens, P.; Blennow, K.; Breteler, M.M.B.; de Strooper, B.; Frisoni, G.B.; Salloway, S.; Van der Flier, W.M. Alzheimer’s disease. Lancet 2016, 388, 505–517. [Google Scholar] [CrossRef]
- Alzheimer’s Disease International. World Alzheimer Report 2019: Attitudes to Dementia; Alzheimer’s Disease International: London, UK, 2019; p. 160. [Google Scholar]
- Alzheimer Association. 2018 Alzheimer’s Disease Facts and Figures; Alzheimer Association: Chicago, IL, USA, 2019; pp. 1–88. [Google Scholar]
- Joe, E.; Ringman, J.M. Cognitive symptoms of Alzheimer’s disease: Clinical management and prevention. BMJ 2019, 367, l6217. [Google Scholar] [CrossRef] [Green Version]
- Prince, M.; Wimo, A.; Guerchet, M.; Ali, G.-C.; Wu, Y.-T.; Prina, M. World Alzheimer Report 2015. The Global Impact of Dementia, an Analysis of Prevalence, Incidence, Cost and Trends; Alzheimer’s Disease International: London, UK, 2015; p. 87. [Google Scholar]
- Hansson, O.; Seibyl, J.; Stomrud, E.; Zetterberg, H.; Trojanowski, J.Q.; Bittner, T.; Lifke, V.; Corradini, V.; Eichenlaub, U.; Batrla, R.; et al. CSF biomarkers of Alzheimer’s disease concord with amyloid-β PET and predict clinical progression: A study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimer’s Dement. 2018, 14, 1470–1481. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.; Jayant, R.D.; Tiwari, S.; Vashist, A.; Nair, M. Nano-biosensors to detect beta-amyloid for Alzheimer’s disease management. Biosens. Bioelectron. 2016, 80, 273–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shui, B.; Tao, D.; Florea, A.; Cheng, J.; Zhao, Q.; Gu, Y.; Li, W.; Jaffrezic-Renault, N.; Mei, Y.; Guo, Z. Biosensors for Alzheimer’s disease biomarker detection: A review. Biochimie 2018, 147, 13–24. [Google Scholar] [CrossRef] [PubMed]
- O′Brien, R.J.; Wong, P.C. Amyloid Precursor Protein Processing and Alzheimer’s Disease. Annu. Rev. Neurosci. 2011, 34, 185–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Xu, T.; Yan, Y.; Zhou, Y.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 2017, 38, 1205–1235. [Google Scholar] [CrossRef]
- Brazaca, L.C.; Sampaio, I.; Zucolotto, V.; Janegitz, B.C. Applications of biosensors in Alzheimer’s disease diagnosis. Talanta 2020, 210, 120644. [Google Scholar] [CrossRef]
- Nunan, J.; Small, D.H. Regulation of APP cleavage by K-, L- and Q-secretases. FEBS Lett. 2000, 483, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Baranello, R.; Bharani, K.; Padmaraju, V.; Chopra, N.; Lahiri, D.; Greig, N.; Pappolla, M.; Sambamurti, K. Amyloid-Beta Protein Clearance and Degradation (ABCD) Pathways and their Role in Alzheimer’s Disease. CAR 2015, 12, 32–46. [Google Scholar] [CrossRef] [Green Version]
- Weggen, S.; Beher, D. Molecular consequences of amyloid precursor protein and presenilin mutations causing autosomal-dominant Alzheimer’s disease. Alzheimers Res. Ther. 2012, 4, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selkoe, D.J. Alzheimer’s Disease: Genes, Proteins, and Therapy. Physiol. Rev. 2001, 81, 741–766. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.A.; Giggins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef] [PubMed]
- Erten-Lyons, D.; Woltjer, R.L.; Dodge, H.; Nixon, R.; Vorobik, R.; Calvert, J.F.; Leahy, M.; Montine, T.; Kaye, J. Factors associated with resistance to dementia despite high Alzheimer disease pathology. Neurology 2009, 72, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, U.; Nilson, A.N.; Kayed, R. The Role of Amyloid-β Oligomers in Toxicity, Propagation, and Immunotherapy. EBioMedicine 2016, 6, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Hong, S.; O’Malley, T.; Sperling, R.A.; Walsh, D.M.; Selkoe, D.J. New ELISAs with high specificity for soluble oligomers of amyloid β-protein detect natural Aβ oligomers in human brain but not CSF. Alzheimer’s Dement. 2013, 9, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Gandy, S.; Simon, A.J.; Steele, J.W.; Lublin, A.L.; Lah, J.J.; Walker, L.C.; Levey, A.I.; Krafft, G.A.; Levy, E.; Checler, F.; et al. Days to criterion as an indicator of toxicity associated with human Alzheimer amyloid-β oligomers. Ann. Neurol. 2010, 68, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Chakroborty, S.; Stutzmann, G.E. Calcium channelopathies and Alzheimer’s disease: Insight into therapeutic success and failures. Eur. J. Pharmacol. 2014, 739, 83–95. [Google Scholar] [CrossRef]
- Disterhoft, J.F.; Moyer, J.R.; Thompson, L.T. The Calcium Rationale in Aging and Alzheimer’s Disease: Evidence from an Animal Model of Normal Aginga. Ann. N. Y. Acad. Sci. 2006, 747, 382–406. [Google Scholar] [CrossRef]
- Lambert, M.P.; Barlow, A.K.; Chromy, B.A.; Edwards, C.; Freed, R.; Liosatos, M.; Morgan, T.E.; Rozovsky, I.; Trommer, B.; Viola, K.L.; et al. Diffusible, nonfibrillar ligands derived from A 1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 1998, 95, 6448–6453. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, K.; Liu, F.; Gong, C.-X.; Grundke-Iqbal, I. Tau in Alzheimer Disease and Related Tauopathies. CAR 2010, 7, 656–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, K.; Alonso, A.d.C.; Gong, C.-X.; Khatoon, S.; Pei, J.-J.; Wang, J.Z.; Grundke-Iqbal, I. Mechanisms of neurofibrillary degeneration and the formation of neurofibrillary tangles. In Ageing and Dementia; Jellinger, K., Fazekas, F., Windisch, M., Eds.; Journal of Neural Transmission. Supplementa; Springer: Vienna, Austria, 1998; Volume 53, pp. 169–180. ISBN 978-3-211-83114-4. [Google Scholar]
- Iqbal, K.; Zaidi, T.; Wen, G.Y.; Grundke-Iqbal, I.; Merz, P.A.; Shaikh, S.S.; Wisniewski, H.M.; Alafuzoff, I.; Winblad, B. Defective brain microtubule assembly in Alzheimer’s disease. Lancet 1986, 2, 421–426. [Google Scholar] [CrossRef]
- Zhou, Y.; Shi, J.; Chu, D.; Hu, W.; Guan, Z.; Gong, C.-X.; Iqbal, K.; Liu, F. Relevance of Phosphorylation and Truncation of Tau to the Etiopathogenesis of Alzheimer’s Disease. Front. Aging Neurosci. 2018, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Braak, E.; Grundke-Iqbal, I.; Iqbal, K. Occurrence of neuropil threads in the senile human brain and in Alzheimer’s disease: A third location of paired helical filaments outside of neurofibrillary tangles and neuritic plaques. Neurosci. Lett. 1986, 65, 351–355. [Google Scholar] [CrossRef]
- Grehan, S.; Tse, E.; Taylor, J.M. Two Distal Downstream Enhancers Direct Expression of the Human Apolipoprotein E Gene to Astrocytes in the Brain. J. Neurosci. Res. 2001, 21, 812–822. [Google Scholar] [CrossRef] [Green Version]
- Rall, J.S.; Weisgraber, K.; Mahley, R. Human Apolipoprotein E: The complete amino acid sequence. Int. J. Biol. Chem. 1982, 257, 4171–4178. [Google Scholar]
- Kim, J.; Basak, J.M.; Holtzman, D.M. The Role of Apolipoprotein E in Alzheimer’s Disease. Neuron 2009, 63, 287–303. [Google Scholar] [CrossRef] [Green Version]
- Wisniewski, T.; Frangione, B. Apolipoprotein E: A pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci. Lett. 1992, 135, 235–238. [Google Scholar] [CrossRef]
- Blennow, K.; Hampel, H.; Weiner, M.; Zetterberg, H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol. 2010, 6, 131–144. [Google Scholar] [CrossRef]
- Lanni, C.; Uberti, D.; Racchi, M.; Govoni, S.; Memo, M. Unfolded p53: A Potential Biomarker for Alzheimer’s Disease. JAD 2007, 12, 93–99. [Google Scholar] [CrossRef]
- Lane, D.P. Cancer. p53, guardian of the genome. Nature 1992, 358, 15–16. [Google Scholar] [CrossRef] [PubMed]
- Lanni, C.; Racchi, M.; Stanga, S.; Mazzini, G.; Ranzenigo, A.; Polotti, R.; Memo, M.; Govoni, S.; Uberti, D. Unfolded p53 in Blood as a Predictive Signature Signature of the Transition from Mild Cognitive Impairment to Alzheimer’s Disease. JAD 2010, 20, 97–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uberti, D.; Ferrari-Torinelli, G.; Bonini, S.A.; Sarnico, I.; Benarese, M.; Pizzi, M.; Benussi, L.; Ghidoni, R.; Binetti, G.; Spano, P.; et al. Blockade of the Tumor Necrosis Factor-Related Apoptosis Inducing Ligand Death Receptor DR5 Prevents b-Amyloid Neurotoxicity. Neuropsychopharmacology 2007, 32, 872–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanni, C.; Racchi, M.; Mazzini, G.; Ranzenigo, A.; Polotti, R.; Sinforiani, E.; Olivari, L.; Barcikowska, M.; Styczynska, M.; Kuznicki, J.; et al. Conformationally altered p53: A novel Alzheimer’s disease marker? Mol. Psychiatry 2008, 13, 641–647. [Google Scholar] [CrossRef] [Green Version]
- Martorana, A. Is dopamine involved in Alzheimer’s disease? Front. Aging Neurosci. 2014, 6, 252. [Google Scholar] [CrossRef] [Green Version]
- Karami, A.; Eyjolfsdottir, H.; Vijayaraghavan, S.; Lind, G.; Almqvist, P.; Kadir, A.; Linderoth, B.; Andreasen, N.; Blennow, K.; Wall, A.; et al. Changes in CSF cholinergic biomarkers in response to cell therapy with NGF in patients with Alzheimer’s disease. Alzheimer’s Dement. 2015, 11, 1316–1328. [Google Scholar] [CrossRef]
- Shin, J.-W.; Kim, K.-J.; Yoon, J.; Jo, J.; El-Said, W.A.; Choi, J.-W. Silver Nanoparticle Modified Electrode Covered by Graphene Oxide for the Enhanced Electrochemical Detection of Dopamine. Sensors 2017, 17, 2771. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.J.; Choi, J.-H.; Um, S.H.; Oh, B.-K. Electrochemical sensor for selective detection of norepinephrine using graphene sheets-gold nanoparticle complex modified electrode. Korean J. Chem. Eng. 2017, 34, 1129–1132. [Google Scholar] [CrossRef]
- Chen, Z.; Zhong, C. Oxidative stress in Alzheimer’s disease. Neurosci. Bull. 2014, 30, 271–281. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, B. Oxidative Stress and the Pathogenesis of Alzheimer’s Disease. Oxid. Med. Cell. Longev. 2013, 2013, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Qu, F.; Yang, M.; Rasooly, A. Dual Signal Amplification Electrochemical Biosensor for Monitoring the Activity and Inhibition of the Alzheimer’s Related Protease β-Secretase. Anal. Chem. 2016, 88, 10559–10565. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Lee, H.J. Electrochemical sandwich-type biosensors for α−1 antitrypsin with carbon nanotubes and alkaline phosphatase labeled antibody-silver nanoparticles. Biosens. Bioelectron. 2017, 89, 959–963. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, S.; Janciauskiene, S.; Lannfelt, L. Alpha1-Antichymotrypsin regulates Alzheimer beta-amyloid peptide fibril formation. Proc. Natl. Acad. Sci. USA 1995, 92, 2313–2317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serafín, V.; Gamella, M.; Pedrero, M.; Montero-Calle, A.; Razzino, C.A.; Yáñez-Sedeño, P.; Barderas, R.; Campuzano, S.; Pingarrón, J.M. Enlightening the advancements in electrochemical bioanalysis for the diagnosis of Alzheimer’s disease and other neurodegenerative disorders. J. Pharmaceut. Biomed. 2020, 189, 113437. [Google Scholar] [CrossRef]
- Sangubotla, R.; Kim, J. Recent trends in analytical approaches for detecting neurotransmitters in Alzheimer’s disease. TrAC 2018, 105, 240–250. [Google Scholar] [CrossRef]
- Beal, M.F. Oxidative damage as an early marker of Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 2005, 26, 585–586. [Google Scholar] [CrossRef]
- Wu, H.Z.Y.; Ong, K.L.; Seeher, K.; Armstrong, N.J.; Thalamuthu, A.; Brodaty, H.; Sachdev, P.; Mather, K. Circulating microRNAs as Biomarkers of Alzheimer’s Disease: A Systematic Review. JAD 2016, 49, 755–766. [Google Scholar] [CrossRef]
- Bekris, L.M.; Lutz, F.; Montine, T.J.; Yu, C.E.; Tsuang, D.; Peskind, E.R.; Leverenz, J.B. MicroRNA in Alzheimer’s disease: An exploratory study in brain, cerebrospinal fluid and plasma. Biomarkers 2013, 18, 455–466. [Google Scholar] [CrossRef] [Green Version]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: New York, NY, USA, 2001; ISBN 978-0-471-04372-0. [Google Scholar]
- Thévenot, D.R.; Toth, K.; Durst, R.D.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Pure Appl. Chem. 1999, 71, 2333–2348. [Google Scholar] [CrossRef] [Green Version]
- Goumi, Y.E. Electrochemical Genosensors: Definition and Fields of Application. Int. J. Biosens. 2017, 3, 353–355. [Google Scholar] [CrossRef] [Green Version]
- Monošík, R.; Streďanský, M.; Šturdík, E. Biosensors-classification, characterization and new trends. Acta Chim. Slov. 2012, 5, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Pividori, M. Electrochemical genosensor design: Immobilisation of oligonucleotides onto transducer surfaces and detection methods. Biosens. Bioelectron. 2000, 15, 291–303. [Google Scholar] [CrossRef]
- Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J. Electrochemical Genosensing of Circulating Biomarkers. Sensors 2017, 17, 866. [Google Scholar] [CrossRef] [PubMed]
- Bauman, J.G.J.; Weigant, J.; Borst, P.; van Duijn, P. A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochrome-labelled RNA. Exp. Cell Res. 1980, 128, 485–490. [Google Scholar] [CrossRef]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef]
- Odeh, F.; Nsairat, H.; Alshaer, W.; Ismail, M.A.; Esawi, E.; Qaqish, B.; Bawab, A.A.; Ismail, S.I. Aptamers Chemistry: Chemical Modifications and Conjugation Strategies. Molecules 2019, 25, 3. [Google Scholar] [CrossRef] [Green Version]
- Anik, Ü. Electrochemical medical biosensors for POC applications. In Medical Biosensors for Point of Care (POC) Applications; Elsevier: Amsterdam, The Netherlands, 2017; pp. 275–292. ISBN 978-0-08-100072-4. [Google Scholar]
- Carneiro, P.; Morais, S.; Pereira, M.C. Nanomaterials towards Biosensing of Alzheimer’s Disease Biomarkers. Nanomaterials 2019, 9, 1663. [Google Scholar] [CrossRef] [Green Version]
- Hayat, A.; Catanante, G.; Marty, J. Current Trends in Nanomaterial-Based Amperometric Biosens. Sensors 2014, 14, 23439–23461. [Google Scholar] [CrossRef] [Green Version]
- Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for biosensing applications: A review. Front. Chem. 2014, 2, 63. [Google Scholar] [CrossRef] [Green Version]
- Walcarius, A.; Minteer, S.D.; Wang, J.; Lin, Y.; Merkoçi, A. Nanomaterials for bio-functionalized electrodes: Recent trends. J. Mater. Chem. B 2013, 1, 4878–4908. [Google Scholar] [CrossRef]
- Mansuriya, B.D.; Altintas, Z. Applications of Graphene Quantum Dots in Biomedical Sensors. Sensors 2020, 20, 1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhotra, B.D.; Ali, M.A. Nanomaterials in Biosensors. In Nanomaterials for Biosensors; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–74. ISBN 978-0-323-44923-6. [Google Scholar]
- De la Escosura-Muñiz, A.; Ambrosi, A.; Merkoçi, A. Electrochemical analysis with nanoparticle-based biosystems. TrAC 2008, 27, 568–584. [Google Scholar]
- Liu, G.; Lin, Y. Nanomaterial labels in electrochemical immunosensors and immunoassays. Talanta 2007, 74, 308–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wei, Q. The role of nanomaterials in electroanalytical biosensors: A mini review. J. Electroanal. Chem. 2016, 781, 401–409. [Google Scholar] [CrossRef]
- Iglesias-Mayor, A.; Amor-Gutiérrez, O.; Costa-García, A.; de la Escosura-Muñiz, A. Nanoparticles as Emerging Labels in Electrochemical Immunosensors. Sensors 2019, 19, 5137. [Google Scholar] [CrossRef] [Green Version]
- Forlenza, O.V.; Radanovic, M.; Talib, L.L.; Aprahamian, I.; Diniz, B.S.; Zetterberg, H.; Gattaz, W.F. Cerebrospinal fluid biomarkers in Alzheimer’s disease: Diagnostic accuracy and prediction of dementia. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2015, 1, 455–463. [Google Scholar] [CrossRef]
- Sohrabi, N.; Valizadeh, A.; Farkhani, S.M.; Akbarzadeh, A. Basics of DNA biosensors and cancer diagnosis. Artif. Cells Nanomed. Biotechnol. 2016, 44, 654–663. [Google Scholar] [CrossRef]
- Crick, F.H.C.; Watson, J.D. The complementary structure of deoxyribonucleic acid. Proc. Math. Phys. Eng. Sci. 1954, 223, 80–96. [Google Scholar]
- Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.; George-Hyslop, P.H.S.; Pericak-Vance, M.A.; Joo, S.H.; Rosi, B.L.; Gusella, J.F.; Crapper-MacLachlan, D.R.; Alberts, M.J.; et al. Association of apolipoprotein E allele E4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993, 43, 1467. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008, 18, 997–1006. [Google Scholar] [CrossRef] [Green Version]
- Bartel, D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azimzadeh, M.; Rahaie, M.; Nasirizadeh, N.; Daneshpour, M.; Naderi, H. Electrochemical miRNA Biosensors: The Benefits of Nanotechnology. Nanomed. Res. J. 2017, 2, 36–48. [Google Scholar]
- Novoselov, K.S. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Li, Z.; Wang, J.; Li, J.; Lin, Y. Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011, 29, 205–212. [Google Scholar] [CrossRef]
- Zhou, M.; Zhai, Y.; Dong, S. Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide. Anal. Chem. 2009, 81, 5603–5613. [Google Scholar] [CrossRef]
- Mars, A.; Hamami, M.; Bechnak, L.; Patra, D.; Raouafi, N. Curcumin-graphene quantum dots for dual mode sensing platform: Electrochemical and fluorescence detection of APOe4, responsible of Alzheimer’s disease. Anal. Chim. Acta 2018, 1036, 141–146. [Google Scholar] [CrossRef]
- Wu, L.; Ji, H.; Sun, H.; Ding, C.; Ren, J.; Qu, X. Label-free ratiometric electrochemical detection of the mutated apolipoprotein E gene associated with Alzheimer’s disease. Chem. Commun. 2016, 52, 12080–12083. [Google Scholar] [CrossRef]
- Peng, F.; Su, Y.; Zhong, Y.; Fan, C.; Lee, S.-T.; He, Y. Silicon Nanomaterials Platform for Bioimaging, Biosensing, and Cancer Therapy. Acc. Chem. Res. 2014, 47, 612–623. [Google Scholar] [CrossRef]
- Congur, G.; Eksin, E.; Erdem, A. Impedimetric detection of miRNA-34a using graphene oxide modified chemically activated graphite electrodes. Sens. Actuators A Phys. 2018, 279, 493–500. [Google Scholar] [CrossRef]
- Azimzadeh, M.; Nasirizadeh, N.; Rahaie, M.; Naderi-Manesh, H. Early detection of Alzheimer’s disease using a biosensor based on electrochemically-reduced graphene oxide and gold nanowires for the quantification of serum microRNA-137. RSC Adv. 2017, 7, 55709–55719. [Google Scholar] [CrossRef] [Green Version]
- Zunino, F.; Di Marco, A.; Zaccara, A.; Gambetta, R.A. The interaction of daunorubicin and doxorubicin with DNA and chromatin. Biochim. Biophys. Acta (BBA)-Nucleic Acids Protein Synth. 1980, 607, 206–214. [Google Scholar] [CrossRef]
- Cheng, X.R.; Hau, B.Y.H.; Endo, T.; Kerman, K. Au nanoparticle-modified DNA sensor based on simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance. Biosens. Bioelectron. 2014, 53, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Wu, L.; Wang, J.; Wang, Z.; Yi, X.; Wang, J.; Wang, N. Voltammetric determination of the Alzheimer’s disease-related ApoE 4 gene from unamplified genomic DNA extracts by ferrocene-capped gold nanoparticles. Microchim. Acta 2018, 185, 549. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Wang, Y.; Zhao, L.; Ji, C.; Chen, D.; Nie, L. Applications of Gold Nanoparticles in Non-Optical Biosensors. Nanomaterials 2018, 8, 977. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Schluesener, H.J.; Xu, S. Gold nanoparticle-based biosensors. Gold Bull. 2010, 43, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-C.; Ku, B.-C.; Ko, C.-H.; Chiu, C.-C.; Wang, G.-J.; Yang, Y.-H.; Wu, S.-J. Electrochemical impedance spectroscopy analysis of A-beta (1–42) peptide using a nanostructured biochip. Electrochim. Acta 2014, 134, 249–257. [Google Scholar] [CrossRef]
- Carneiro, P.; Loureiro, J.; Delerue-Matos, C.; Morais, S.; do Carmo Pereira, M. Alzheimer’s disease: Development of a sensitive label-free electrochemical immunosensor for detection of amyloid beta peptide. Sensor. Actuat. B Chem. 2017, 239, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Amor-Gutiérrez, O.; Costa-Rama, E.; Arce-Varas, N.; Martínez-Rodríguez, C.; Novelli, A.; Fernández-Sánchez, M.T.; Costa-García, A. Competitive electrochemical immunosensor for the detection of unfolded p53 protein in blood as biomarker for Alzheimer’s disease. Anal. Chim. Acta 2020, 1093, 28–34. [Google Scholar] [CrossRef]
- Rama, E.C.; González-García, M.B.; Costa-García, A. Competitive electrochemical immunosensor for amyloid-beta 1–42 detection based on gold nanostructurated Screen-Printed Carbon Electrodes. Sensor. Actuat. B Chem. 2014, 201, 567–571. [Google Scholar] [CrossRef]
- Diba, F.S.; Kim, S.; Lee, H.J. Electrochemical immunoassay for amyloid-beta 1–42 peptide in biological fluids interfacing with a gold nanoparticle modified carbon surface. Catal. Today 2017, 295, 41–47. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, C.; Li, X.; Zhu, X.; Ye, B.; Xu, M. A sensitive aptasensor for the detection of β-amyloid oligomers based on metal–organic frameworks as electrochemical signal probes. Anal. Methods 2018, 10, 4430–4437. [Google Scholar] [CrossRef]
- Lien, T.T.N.; Takamura, Y.; Tamiya, E.; Vestergaard, M.C. Modified screen printed electrode for development of a highly sensitive label-free impedimetric immunosensor to detect amyloid beta peptides. Anal. Chim. Acta 2015, 892, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Cho, M.; Lee, Y. Ultrasensitive Detection of Amyloid-β Using Cellular Prion Protein on the Highly Conductive Au Nanoparticles–Poly (3,4-ethylene dioxythiophene)–Poly(thiophene-3-acetic acid) Composite Electrode. Anal. Chem. 2019, 91, 11259–11265. [Google Scholar] [CrossRef]
- Sethi, J.; Van Bulck, M.; Suhail, A.; Safarzadeh, M.; Perez-Castillo, A.; Pan, G. A label-free biosensor based on graphene and reduced graphene oxide dual-layer for electrochemical determination of beta-amyloid biomarkers. Microchim. Acta 2020, 187, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, F.T.C.; Rodriguez, B.A.G.; Dutra, R.A.F.; Sales, M.G.F. Redox probe-free readings of a β-amyloid-42 plastic antibody sensory material assembled on copper@carbon nanotubes. Sensor. Actuat. B Chem. 2018, 264, 1–9. [Google Scholar] [CrossRef]
- Wustoni, S.; Wang, S.; Alvarez, J.R.; Hidalgo, T.C.; Nunes, S.P.; Inal, S. An organic electrochemical transistor integrated with a molecularly selective isoporous membrane for amyloid-β detection. Biosens. Bioelectron. 2019, 143, 111561. [Google Scholar] [CrossRef] [PubMed]
- Devi, R.; Gogoi, S.; Dutta, H.S.; Bordoloi, M.; Sanghi, S.K.; Khan, R. Au/NiFe2O4 nanoparticle-decorated graphene oxide nanosheets for electrochemical immunosensing of amyloid beta peptide. Nanoscale Adv. 2020, 2, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhao, F.; Ma, F.; Zhang, L.; Yang, S.; Xia, N. Electrochemical detection of β-amyloid peptides on electrode covered with N-terminus-specific antibody based on electrocatalytic O2 reduction by Aβ(1–16)-heme-modified gold nanoparticles. Biosens. Bioelectron. 2013, 49, 231–235. [Google Scholar] [CrossRef]
- Yoo, Y.K.; Kim, G.; Park, D.; Kim, J.; Kim, Y.; Yun Kim, H.; Yang, S.H.; Lee, J.H.; Hwang, K.S. Gold nanoparticles assisted sensitivity improvement of interdigitated microelectrodes biosensor for amyloid-β detection in plasma sample. Sensor. Actuat. B Chem. 2020, 308, 127710. [Google Scholar] [CrossRef]
- Iglesias-Mayor, A.; Amor-Gutiérrez, O.; Novelli, A.; Fernández-Sánchez, M.-T.; Costa-García, A.; de la Escosura-Muñiz, A. Bifunctional Au@Pt/Au core@shell Nanoparticles As Novel Electrocatalytic Tags in Immunosensing: Application for Alzheimer’s Disease Biomarker Detection. Anal. Chem. 2020, 92, 7209–7217. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, H.; Liu, L.; Li, C.; Chang, Z.; Zhu, X.; Ye, B.; Xu, M. Fabrication of an antibody-aptamer sandwich assay for electrochemical evaluation of levels of β-amyloid oligomers. Sci. Rep. 2016, 6, 35186. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Sun, X.; Tang, D.; Li, C.; Zhang, L.; Nie, D.; Yin, X.; Shi, G. Gelsolin bound β-amyloid peptides (1–40/1–42): Electrochemical evaluation of levels of soluble peptide associated with Alzheimer’s disease. Biosens. Bioelectron. 2015, 68, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Xu, Y.; LIu, Q.; Gu, H.; Zhu, X.; Shi, G. Interface engineering of microelectrodes toward ultrasensitive monitoring of β-amyloid peptides in cerebrospinal fluid in Alzheimer’s disease. Analyst 2020, 145, 2331–2338. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Wang, X.; Yu, J.; Wu, Y.; Cheng, S.; Xing, Y.; Liu, L. Design of electrochemical biosensors with peptide probes as the receptors of targets and the inducers of gold nanoparticles assembly on electrode surface. Sensor. Actuat. B Chem. 2017, 239, 834–840. [Google Scholar] [CrossRef]
- Xia, N.; Wang, X.; Zhou, B.; Wu, Y.; Mao, W.; Liu, L. Electrochemical Detection of Amyloid-β Oligomers Based on the Signal Amplification of a Network of Silver Nanoparticles. ACS Appl. Mater. Interfaces 2016, 8, 19303–19311. [Google Scholar] [CrossRef]
- You, M.; Yang, S.; An, Y.; Zhang, F.; He, P. A novel electrochemical biosensor with molecularly imprinted polymers and aptamer-based sandwich assay for determining amyloid-β oligomer. J. Electroanal. Chem. 2020, 862, 114017. [Google Scholar] [CrossRef]
- Qin, J.; Cho, M.; Lee, Y. Ferrocene-Encapsulated Zn Zeolitic Imidazole Framework (ZIF-8) for Optical and Electrochemical Sensing of Amyloid-β Oligomers and for the Early Diagnosis of Alzheimer’s Disease. ACS Appl. Mater. Interfaces 2019, 11, 11743–11748. [Google Scholar] [CrossRef]
- Rogers, K.R. Principles of affinity-based biosensors. Mol. Biotechnol. 2000, 14, 109–129. [Google Scholar] [CrossRef]
- Grönwall, C.; Ståhl, S. Engineered affinity proteins—Generation and applications. J. Biotechnol. 2009, 140, 254–269. [Google Scholar] [CrossRef]
- Gunther, E.C.; Strittmatter, S.M. β-amyloid oligomers and cellular prion protein in Alzheimer’s disease. J. Mol. Med. 2010, 88, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Radushkevich, L.V.; Lukyanovich, V.M. The structure of carbon forming in thermal decomposition of carbon monoxide on an iron catalyst. Russ. J. Phys. Chem. 1952, 26, 88–95. [Google Scholar]
- Herlem, G.; Picaud, F.; Girardet, C.; Micheau, O. Carbon Nanotubes: Synthesis, Characterization, and Applications in Drug-Delivery Systems. In Nanocarriers for Drug Delivery. Nanoscience and Nanotechnology in Drug Delivery. A Volume in Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 469–529. ISBN 978-0-12-814033-8. [Google Scholar]
- Tîlmaciu, C.-M.; Morris, M.C. Carbon nanotube biosensors. Front. Chem. 2015, 3, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scriba, G.K.E. Chiral recognition in separation science–an update. J. Chromatogr. A 2016, 1467, 56–78. [Google Scholar] [CrossRef] [PubMed]
- Hillberg, A.; Brain, K.; Allender, C. Molecular imprinted polymer sensors: Implications for therapeutics. Adv. Drug Deliv. Rev. 2005, 57, 1875–1889. [Google Scholar] [CrossRef] [PubMed]
- Moreira, F.T.C.; Sales, M.G.F. Smart naturally plastic antibody based on poly (α-cyclodextrin) polymer for β-amyloid-42 soluble oligomer detection. Sensor. Actuat. B Chem. 2017, 240, 229–238. [Google Scholar] [CrossRef]
- Vendamme, R.; Onoue, S.-Y.; Nakao, A.; Kunitake, T. Robust free-standing nanomembranes of organic/inorganic interpenetrating networks. Nat. Mater. 2006, 5, 494–501. [Google Scholar] [CrossRef]
- Agboola, O.; Sadiku, E.R.; Mokrani, T. Nanomembrane Materials Based on Polymer Blends. In Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems; Elsevier: Amsterdam, The Netherlands, 2016; pp. 101–123. ISBN 978-0-323-39408-6. [Google Scholar]
- Jakšić, Z.; Matovic, J. Functionalization of Artificial Freestanding Composite Nanomembranes. Materials 2010, 3, 165–200. [Google Scholar] [CrossRef] [Green Version]
- Rivnay, J.; Inal, S.; Salleo, A.; Owens, R.M.; Berggren, M.; Malliaras, G.G. Organic electrochemical transistors. Nat. Rev. Mater. 2018, 3, 17086. [Google Scholar] [CrossRef]
- Singh, P.; Rathore, D. A biosensor system using nickel ferrite nanoparticles. AIP Conf. Proc. 2016, 1728, 020259. [Google Scholar]
- Rocha-Santos, T.A.P. Sensors and biosensors based on magnetic nanoparticles. TrAC 2014, 62, 28–36. [Google Scholar] [CrossRef]
- Pansieri, J.; Gerstenmayer, M.; Lux, F.; Mériaux, S.; Tillement, O.; Forge, V.; Larrat, B.; Marquette, C. Magnetic Nanoparticles Applications for Amyloidosis Study and Detection: A Review. Nanomaterials 2018, 8, 740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, H.B.; Gu, M.B. Aptamer-based sandwich-type biosensors. J. Biol. Eng. 2017, 11, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauhan, V.P.S.; Ray, I.; Chauhan, A.; Wisniewski, H.M. Binding of Gelsolin, a Secretory Protein, to Amyloid Protein. Biochem. Biophys. Res. Commun. 1999, 258, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, D. Silver nanoparticles as labels for applications in bioassays. TrAC 2014, 61, 67–73. [Google Scholar] [CrossRef]
- Yaghi, O.M.; O’Keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714. [Google Scholar] [CrossRef]
- Wang, S.; McGuirk, C.M.; d’Aquino, A.; Mason, J.A.; Mirkin, C.A. Metal-Organic Framework Nanoparticles. Adv. Mater. 2018, 30, 1800202. [Google Scholar] [CrossRef] [PubMed]
- Sakata, Y.; Furukawa, S.; Kondo, M.; Hirai, K.; Horike, N.; Takashima, Y.; Uehara, H.; Louvain, N.; Meilikhov, M.; Tsuruoka, T.; et al. Shape-Memory Nanopores Induced in Coordination Frameworks by Crystal Downsizing. Science 2013, 339, 193–196. [Google Scholar] [CrossRef]
- Zhao, F.; Geng, F.; Chen, P.; Gao, Y. Metal-Organic Frameworks-Based Electrochemical Sensors and Biosensors. Int. J. Electrochem. Sci. 2019, 14, 5287–5304. [Google Scholar] [CrossRef]
- Doherty, C.M.; Buso, D.; Hill, A.J.; Furukawa, S.; Kitagawa, S.; Falcaro, P. Using Functional Nano- and Microparticles for the Preparation of Metal–Organic Framework Composites with Novel Properties. Acc. Chem. Res. 2014, 47, 396–405. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, L.-P.; Wang, S.; Yang, W.; Wen, Y.; Zhang, X. An ultrasensitive electrochemical immunosensor for apolipoprotein E4 based on fractal nanostructures and enzyme amplification. Biosens. Bioelectron. 2015, 71, 396–400. [Google Scholar] [CrossRef]
- Liu, Y.; He, G.; Liu, H.; Yin, H.; Gao, F.; Chen, J.; Zhang, S.; Yang, B. Electrochemical immunosensor based on AuBP@Pt nanostructure and AuPd-PDA nanozyme for ultrasensitive detection of APOE4. RSC Adv. 2020, 10, 7912–7917. [Google Scholar] [CrossRef]
- Negahdary, M.; Heli, H. An ultrasensitive electrochemical aptasensor for early diagnosis of Alzheimer’s disease, using a fern leaves-like gold nanostructure. Talanta 2019, 198, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Negahdary, M.; Heli, H. An electrochemical peptide-based biosensor for the Alzheimer biomarker amyloid-β (1–42) using a microporous gold nanostructure. Microchim. Acta 2019, 186, 766. [Google Scholar] [CrossRef] [PubMed]
- Hang, J.; Zhang, M.; Chen, G.; Zhang, Y.; Wei, Q.; Zhuo, Y.; Xie, G.; Yuan, R.; Chen, S. Ferrocene covalent-confined in porous MOF as signal tags for highly sensitive electrochemical immunoassay of amyloid-β. J. Mater. Chem. B 2017, 5, 8330–8336. [Google Scholar]
- Razzino, C.A.; Serafín, V.; Gamella, M.; Pedrero, M.; Montero-Calle, A.; Barderas, R.; Calero, M.; Lobo, A.O.; Yáñez-Sedeño, P.; Campuzano, S.; et al. An electrochemical immunosensor using gold nanoparticles-PAMAM-nanostructured screen-printed carbon electrodes for tau protein determination in plasma and brain tissues from Alzheimer patients. Biosens. Bioelectron. 2020, 163, 112238. [Google Scholar] [CrossRef]
- Özcan, N.; Medetalibeyoglu, H.; Akyıldırım, O.; Atar, N.; Yola, M.L. Electrochemical detection of amyloid-β protein by delaminated titanium carbide MXene/multi-walled carbon nanotubes composite with molecularly imprinted polymer. Mater. Today Commun. 2020, 23, 101097. [Google Scholar] [CrossRef]
- Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Transition Metal Carbides. ACS Nano 2012, 6, 1322–1331. [Google Scholar] [CrossRef]
- Li, X.; Jiang, M.; Cheng, J.; Ye, M.; Zhang, W.; Jaffrezic-Renault, N.; Guo, Z. Signal multi-amplified electrochemical biosensor for voltammetric determination of tau-441 protein in biological samples using carbon nanomaterials and gold nanoparticles to hint dementia. Microchim. Acta 2020, 187, 302. [Google Scholar] [CrossRef]
- Tao, D.; Shui, B.; Gu, Y.; Cheng, J.; Zhang, W.; Jaffrezic-Renault, N.; Song, S.; Guo, Z. Development of a Label-Free Electrochemical Aptasensor for the Detection of Tau381 and its Preliminary Application in AD and Non-AD Patients’ Sera. Biosensors 2019, 9, 84. [Google Scholar] [CrossRef] [Green Version]
- Wai, J.L.; New, S.Y. Cysteamine-coated gold nanoparticles for bimodal colorimetric detection with inverse sensitivity: A proof-of-concept with lysozyme. RSC Adv. 2020, 10, 1088–1094. [Google Scholar] [CrossRef] [Green Version]
- Charbgoo, F.; Ramezani, M.; Darroudi, M. Bio-sensing applications of cerium oxide nanoparticles: Advantages and disadvantages. Biosens. Bioelectron. 2017, 96, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Solanki, P.R.; Kaushik, A.; Agrawal, V.V.; Malhotra, B.D. Nanostructured metal oxide-based biosensors. NPG Asia Mater. 2011, 3, 17–24. [Google Scholar] [CrossRef]
- Gao, Z.; Li, Y.; Zhang, C.; Zhang, S.; Jia, Y.; Li, F.; Ding, H.; Li, X.; Chen, Z.; Wei, Q. AuCuxO-Embedded Mesoporous CeO 2 Nanocomposites as a Signal Probe for Electrochemical Sensitive Detection of Amyloid-Beta Protein. ACS Appl. Mater. Interfaces 2019, 11, 12335–12341. [Google Scholar] [CrossRef] [PubMed]
- Díaz-González, M.; de la Escosura-Muñiz, A.; Fernandez-Argüelles, M.T.; García Alonso, F.J.; Costa-Fernandez, J.M. Quantum Dot Bioconjugates for Diagnostic Applications. Top. Curr. Chem. Z 2020, 378, 1–44. [Google Scholar] [CrossRef] [PubMed]
- Medina-Sánchez, M.; Miserere, S.; Morales-Narváez, E.; Merkoçi, A. On-chip magneto-immunoassay for Alzheimer’s biomarker electrochemical detection by using quantum dots as labels. Biosens. Bioelectron. 2014, 54, 279–284. [Google Scholar] [CrossRef]
- Hara, M.; Mallouk, T.E. Photocatalytic water oxidation by Nafion-stabilized iridium oxide colloids. Chem. Commun. 2000, 1903–1904. [Google Scholar] [CrossRef]
- Finkelstein-Shapiro, D.; Fournier, M.; Méndez-Hernández, D.D.; Guo, C.; Calatayud, M.; Moore, T.A.; Moore, A.L.; Gust, D.; Yarger, J.L. Understanding iridium oxide nanoparticle surface sites by their interaction with catechol. Phys. Chem. Chem. Phys. 2017, 19, 16151–16158. [Google Scholar] [CrossRef]
- Quesada-González, D.; Baiocco, A.; Martos, A.A.; de la Escosura-Muñiz, A.; Palleschi, G.; Merkoçi, A. Iridium oxide (IV) nanoparticle-based electrocatalytic detection of PBDE. Biosens. Bioelectron. 2019, 127, 150–154. [Google Scholar] [CrossRef] [Green Version]
- Rivas, L.; de la Escosura-Muñiz, A.; Pons, J.; Merkoçi, A. Alzheimer Disease Biomarker Detection Through Electrocatalytic Water Oxidation Induced by Iridium Oxide Nanoparticles. Electroanalysis 2014, 26, 1287–1294. [Google Scholar] [CrossRef] [Green Version]
- Kandimalla, R.; Reddy, P.H. Therapeutics of Neurotransmitters in Alzheimer’s Disease. J. Alzheimers Dis. 2017, 57, 1049–1069. [Google Scholar] [CrossRef] [Green Version]
- Hughes, G.; Pemberton, R.M.; Fielden, P.R.; Hart, J.P. The design, development and application of electrochemical glutamate biosensors. TrAC 2016, 79, 106–113. [Google Scholar] [CrossRef]
- Kwong, A.W.K.; Gründig, B.; Hu, J.; Renneberg, R. Comparative study of hydrogel-immobilized l-glutamate oxidases for a novel thick-film biosensor and its application in food samples. Biotechnol. Lett. 2000, 22, 267–272. [Google Scholar] [CrossRef]
- Choo, S.-S.; Kang, E.-S.; Song, I.; Lee, D.; Choi, J.-W.; Kim, T.-H. Electrochemical Detection of Dopamine Using 3D Porous Graphene Oxide/Gold Nanoparticle Composites. Sensors 2017, 17, 861. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, J.; Shi, K.; Wang, Q.; Zhao, X.; Xiong, Z.; Zou, X.; Wang, Y. Graphene coated by polydopamine/multi-walled carbon nanotubes modified electrode for highly selective detection of dopamine and uric acid in the presence of ascorbic acid. J. Electroanal. Chem. 2016, 770, 56–61. [Google Scholar] [CrossRef]
- Deletioglu, D.; Hasdemir, E.; O Solak, A. Simultaneous Determination of Dopamine and Uric Acid in the Presence of Ascorbic Acid at the Indole-3-Carboxaldehyde Modified Glassy Carbon Electrode. Curr. Anal. Chem. 2010, 6, 203–208. [Google Scholar] [CrossRef]
- Park, D.-J.; Choi, J.-H.; Lee, W.-J.; Um, S.H.; Oh, B.-K. Selective Electrochemical Detection of Dopamine Using Reduced Graphene Oxide Sheets-Gold Nanoparticles Modified Electrode. J. Nanosci. Nanotechnol. 2017, 17, 8012–8018. [Google Scholar] [CrossRef]
- Van der Zee, E.A.; Luiten, P.G.M. Muscarinic acetylcholine receptors in the hippocampus, neocortex and amygdala: A review of immunocytochemical localization in relation to learning and memory. Prog. Neurobiol. 1999, 58, 409–471. [Google Scholar] [CrossRef]
- Da Silva, W.; Brett, C.M.A. Novel biosensor for acetylcholine based on acetylcholinesterase/poly(neutral red)–Deep eutectic solvent/Fe2O3 nanoparticle modified electrode. J. Electroanal. Chem. 2020, 862, 114050. [Google Scholar] [CrossRef]
- Yi, X.; Wu, Y.; Tan, G.; Yu, P.; Zhou, L.; Zhou, Z.; Chen, J.; Wang, Z.; Pang, J.; Ning, C. Palladium nanoparticles entrapped in a self-supporting nanoporous gold wire as sensitive dopamine biosensor. Sci. Rep. 2017, 7, 7941. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, N.; Pundir, C.S. Amperometric determination of acetylcholine—A neurotransmitter, by chitosan/gold-coated ferric oxide nanoparticles modified gold electrode. Biosens. Bioelectron. 2014, 61, 1–8. [Google Scholar] [CrossRef]
- Chauhan, N.; Chawla, S.; Pundir, C.S.; Jain, U. An electrochemical sensor for detection of neurotransmitter-acetylcholine using metal nanoparticles, 2D material and conducting polymer modified electrode. Biosens. Bioelectron. 2017, 89, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Nunomura, A.; Castellani, R.J.; Zhu, X.; Moreira, P.I.; Perry, G.; Smith, M.A. Involvement of Oxidative Stress in Alzheimer Disease. J. Neuropathol. Exp. Neurol. 2006, 65, 631–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zhang, Y.; Cheng, C.; Liu, X.; Jiang, H.; Wang, X. Highly Sensitive Electrochemical Biosensor for Evaluation of Oxidative Stress Based on the Nanointerface of Graphene Nanocomposites Blended with Gold, Fe3O4, and Platinum Nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 18441–18449. [Google Scholar] [CrossRef] [PubMed]
- Sekar, N.K.; Gumpu, M.B.; Ramachandra, B.L.; Nesakumar, N.; Sankar, P.; Babu, K.J.; Krishnan, U.M.; Rayappan, J.B.B. Fabrication of Electrochemical Biosensor with ZnO-PVA Nanocomposite Interface for the Detection of Hydrogen Peroxide. J. Nanosci. Nanotechnol. 2018, 18, 4371–4379. [Google Scholar] [CrossRef]
- Bai, J.; Jiang, X. A Facile One-Pot Synthesis of Copper Sulfide-Decorated Reduced Graphene Oxide Composites for Enhanced Detecting of H2O2 in Biological Environments. Anal. Chem. 2013, 85, 8095–8101. [Google Scholar] [CrossRef]
- Neal, C.J.; Gupta, A.; Barkam, S.; Saraf, S.; Das, S.; Cho, H.J.; Seal, S. Picomolar Detection of Hydrogen Peroxide using Enzyme-free Inorganic Nanoparticle-based Sensor. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Peng, Q.; Yan, X.; Shi, X.; Ou, S.; Gu, H.; Yin, X.; Shi, G.; Yu, Y. In vivo monitoring of superoxide anion from Alzheimer’s rat brains with functionalized ionic liquid polymer decorated microsensor. Biosens. Bioelectron. 2019, 144, 111665. [Google Scholar] [CrossRef]
- Iqbal, K.; Grundke-Iqbal, I. Alzheimer’s disease, a multifactorial disorder seeking multitherapies. Alzheimers Dement. 2010, 6, 420–424. [Google Scholar] [CrossRef] [Green Version]
- De la Escosura-Muñiz, A.; Plichta, Z.; Horák, D.; Merkoçi, A. Alzheimer’s disease biomarkers detection in human samples by efficient capturing through porous magnetic microspheres and labelling with electrocatalytic gold nanoparticles. Biosens. Bioelectron. 2015, 67, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Serafín, V.; Razzino, C.A.; Gamella, M.; Pedrero, M.; Povedano, E.; Montero-Calle, A.; Barderas, R.; Calero, M.; Lobo, A.O.; Yáñez-Sedeño, P.; et al. Disposable immunoplatforms for the simultaneous determination of biomarkers for neurodegenerative disorders using poly(amidoamine) dendrimer/gold nanoparticle nanocomposite. Anal. Bioanal. Chem. 2020. [Google Scholar] [CrossRef]
- Chang, X.-L.; Tan, M.-S.; Tan, L.; Yu, J.-T. The Role of TDP-43 in Alzheimer’s Disease. Mol. Neurobiol. 2016, 53, 3349–3359. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wang, P.; Zhu, X.; Peng, Q.; Zhou, Y.; Yin, T.; Liang, Y.; Yin, X. Combined determination of copper ion and β-amyloid peptide by a single ratiometric electrochemical biosensor. Analyst 2018, 143, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Yin, T.; Peng, Q.; Kong, L.; Li, C.; Tang, D.; Yin, X. Simultaneous Monitoring of Amyloid-β (Aβ) Oligomers and Fibrils for Effectively Evaluating the Dynamic Process of Aβ Aggregation. ACS Sens. 2019, 4, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Xu, T.; Zhu, Q.; Zhang, X. Integrated individually electrochemical array for simultaneously detecting multiple Alzheimer’s biomarkers. Biosens. Bioelectron. 2020, 162, 112253. [Google Scholar] [CrossRef]
Biomarker | Pathogenicity in AD | Reference |
---|---|---|
Aβ peptide | Forms aggregates that accumulate extracellularly around neurons forming senile plaques, causing neurotoxicity and dementia. | [17,18] |
Aβo | Aggregated form of Aβ peptide, present in CSF samples that produces cognitive impairment by inducing the depolarization of neurons’ membranes | [19,20,21] |
Hyperphosphorylated tau | The abnormality phosphorylation of tau promotes its aggregation forming PHF, that form intracellular NFTs, neuropil threads and dystrophic neurons extracellularly accumulated near Aβ plaques. | [24,25,26,27,28] |
ApoE4 | Acts as a binding protein for Aβ, promoting the formation of β-sheets. It is the main biomarker related with early onset dementia. | [31,32] |
Unfolded p53 | It is present at nanomolar concentrations of Aβ peptide as a consequence of it but previously to the formation of notable Aβ plaques. | [36,37,38] |
Neurotransmitters | They could interact with Aβo and minor changes on its synthesis and release could be associated to neurodegenerative diseases. | [39,49] |
Oxidative stress | Induce by inflammation, Aβ formation and hyperphosphorylation of tau. Little changes in the brain could induce a disbalance in blood samples. | [43,50] |
miRNAs | Short oligonucleotides that regulate the translation of mRNA of presenilins and APP genes. | [51,52] |
BACE-1 | β-secretase that cleaves APP gene in its amyloidogenic pathway. | [45] |
α-1-antitripsine | Related with the formation of fibrils of Aβ peptide. | [46] |
Nanomaterial | Role | Biomarker | LOD | Linear Range | Selectivity Tested | Real Sample Tested | Ref |
---|---|---|---|---|---|---|---|
CM-GQDs | Electrode modifier | ApoE4 gene | 16.7 fM | 1.54–30.73 pM | Presence of 100-fold of non-complementary DNA, IgG, cholesterol and glucose oxidase | Human blood plasma | [83] |
MB/Fc-GSHs | Electrode modifier | ApoE4 gene | 10 fM | 10−8–10−14 M | Non-complementary DNA and one mismatched DNA | Not tested | [84] |
GO-CA-PGE | Electrode modifier | miRNA-34a | 261.7 nM | 0–1.45 µM | Other miRNAs | Not tested | [86] |
ERGO/AuNWs | Electrode modifier | miRNA-137 | 1.7 fM | 5.0–750.0 fM | Non-specific oligonucleotides | Human serum with the addition of miRNA | [87] |
AuNPs | Electrode modifier | ApoE4 gene | 286 nM | 10 µM–250 nM | Not tested | Not tested | [89] |
Fc-capped AuNPs | Label | ApoE4 gene | 0.1 pM | 0.1–5 pM | ApoE2/3 with a single base mismatch | DNA extracts from serum samples | [90] |
Nanomaterial | Role | Biomarker | LOD | Linear Range | Selectivity Tested | Real Sample Tested | Ref |
---|---|---|---|---|---|---|---|
AuNPs | Electrode modifier | Aβ | 22 fM | 0.22 pM–2.22 nM | Not tested | Serum samples | [93] |
AuNPs | Electrode modifier | Aβ | 1.15 pM | 2.22–221.6 pM | Not tested | Not tested | [94] |
AuNPs | Electrode modifier | p53 | 0.05 nM | 2–50 nM | Not tested | Real plasma samples of MCI and AD patients | [95] |
AuNPs | Electrode modifier | Aβ | 22.2 pM | 111 pM–111 nM | Not tested | Not tested | [96] |
AuNPs | Electrode modifier | Aβ | 100 fM | 100 fM–25 pM. | HSA, IgG and other AD proteins | Serum and plasma samples | [97] |
AuNFs AuNPs/Cu-MOFs | Electrode modifier Label | Aβo | 0.45 nM | 1 nM–2 μM | Aβ 40, 42 monomers and Aβ(40–42)f | Not tested | [98] |
AuNPs | Electrode modifier | Aβ | 0.57 nM | 10 pM–100 nM | BSA | Not tested | [99] |
AuNPs-PEDOT | Electrode modifier | Aβo | 10-2 fM | 10−8–104 nM | Aβf and monomers | AD mice tissue | [100] |
rGO | Electrode modifier | Aβ | 2.398 pM | 11 pM–55 nM | Aβ40 and ApoE4 | Mice and human plasma | [101] |
CNT-CuO | Electrode modifier | Aβo | 88.6 fM | 22 pM–14.6 nM | Not tested | Serum samples | [102] |
PS-b-P4VP-CR | Electrode modifier | Aβ | 2.21 pM | 2.21 pM–221 nM. | Aβ monomers, peptides and complex media with other proteins | Human blood serum | [103] |
Au/NiFe2O4@GO-Ch | Electrode modifier | Aβ | 0.66 pM | 0.22 pM–222 pM | Aβ 1–40, prostate specific antigens, cortisol and thrombin. | CSF | [104] |
Aβ(1–16)-heme-AuNPs | Label | Aβ | 10 pM | 0.02–1.50 nM | Artificial CSF | Not tested | [105] |
AuNPs | Label | Aβ | 22.15 fM | 0.02–22.2 pM | Brain-derived neurotrophic factor and prostate-specific antigen | Mouse plasma sample | [106] |
MB Au@Pt/Au | Electrode modifier Label | p53 | 66 nM | 50–1000 nM. | Not tested | Human plasma samples | [107] |
AuNPs | Label | Aβo | 100 pM | 0.5–30 nM | Aβ40-42 monomers, Aβ(40–42)o, Aβ(40–42)f | CSF | [108] |
AuNPs | Label | Aβ | 28 pM | 0.1–50 nM | Not tested | CSF and rat brain tissues | [109] |
Cu2+-PEI/AuNPs-hemin | Label | Aβ aggregation | 0.2 pM | 1 pM–50 nM | Endogenic proteins, Aβ oligomers, metal ions, amino acids and other biological species | CSF of normal and AD mice | [110] |
AuNPs | Label | Aβo | 45 pM | 0.1 nM–0.2 µM | Aβ f and monomers, IgG and thrombin | Blood serum | [111] |
AgNPs | Label | Aβo | 8 pM | 20 pM–100 nM. | Aβf and monomers, IgG, BSA, thrombin and α-synudein | Serum samples | [112] |
AuNPs SiO2@AgNPs | Electrode modifier Label | Aβo | 0.27 pM | 1.1 pM–2.2 nM | Aβ40-42 monomers, Aβ(40–42)o, Aβ(40–42)f | Human serum samples | [113] |
ZIF-8/Fer | Label | Aβo | 10-5 μM | 10−5–102 μM | Aβf and monomers and artificial CSF | Not tested | [114] |
Nanomaterial | Role | Biomarker | LOD | Linear Range | Selectivity Tested | Real Sample Tested | Ref |
---|---|---|---|---|---|---|---|
FracAu | Electrode modifier | ApoE4 | 8.78 pM | 23.9 pM–293 nM | BSA, human ApoE2 and ApoE3 | Not tested | [139] |
AuBP@Pt AuPd-PDA | Electrode modifier Label | ApoE4 | 0.45 pM | 1.46 pM–58.6 nM | BSA, human ApoE2 and ApoE3 | Not tested | [140] |
Au-FLGN | Electrode modifier | Aβ protein | 88.6 fM | 0.44–284 pM | Hb, heparin, HSA and bilirubin | Serum and CSF | [141] |
Microporous gold nanostructure | Electrode modifier | Aβ protein | 44.3 fM | 0.7 pM–1.6 nM | Hb, heparin, HSA and bilirubin | Plasma and CSF in AD and elderly normal controls | [142] |
AuNPs Au@Fc-Zn-MOF | Electrode modifier Label | Aβ protein | 6.6 fM | 22.2 fM–22.2 nM | HSA, thrombin, BSA, IgG, Aβo, Aβf and monomers | Human serum samples | [143] |
3D-Au-PAMAM | Electrode modifier | Tau | 0.031 pM | ~0.11–91 pM | IgG, Hb, HSA and BSA | Plasma and tissue extract samples | [144] |
MWCNTs | Electrode modifier | Aβ protein | 44 aM | 0.22–22.2 fM | Aβ42, Hb, heparin and bilirubin | Not tested | [145] |
MWCNTs@rGO AuNPs | Electrode modifier Label | Tau-441 | 0.46 fM | 0.5–80 fM | Glucose, AA, L-cysteine, HSA | Normal people and MCI patients | [147] |
AuNPs | Label | Tau-381 | 0.42 pM | 2.52–25.2 nM | Not tested | Human plasma samples | [148] |
Au@rGO AuCuxO@m-CeO2 | Electrode modifier Label | Aβ protein | 7.97 fM | 22.2 fM–2.2 nM | Insulin, prostate-specific antigen and alpha fetal protein | Not tested | [152] |
MB CdSe@ZnS QDs | Electrode modifier Label | ApoE4 | 0.37 nM | 0.29–5.86 nM | Not tested | Human plasma samples | [154] |
MB IrO2 NPs | Electrode modifier Label | ApoE4 | nM | 100–500 nM | Not tested | Ex-vivo AD-induced rat brain samples | [158] |
HAP NPs | Label | BACE-1 | 0.1 U/mL | 0.25 to 100 U/mL. | Protein kinase A, alkaline phosphatase, glucose oxidase and alcohol dehydrogenase | Serum samples | [45] |
PTCA-CNTs ALP-AAT Ab-Ag NPs | Electrode modifier Label | α-1 antitrypsin | 0.01 pM | 0.05–20.0 pM | IgG and IgE | Serum samples | [46] |
Nanomaterial | Role | Biomarker | LOD | Linear Range | Selectivity Tested | Real Sample Tested | Ref |
---|---|---|---|---|---|---|---|
SNPs@GO | Electrode modifier | DA | 0.2 µM | 0.1–100 µM | UA and AA | Not tested | [41] |
pGO-GNPs | Electrode modifier | DA | 1.28 µM | 0.1–30 µM | AA and glucose | Not tested | [162] |
Pdop@GR-MWCNTs | Electrode modifier | DA | 1 µM | 7–297 µM | AA, glucose and different ions | Human serum | [163] |
rGS-GNPs | Electrode modifier | DA | 0.098 µM | 0.1–100 µM | AA | Not tested | [165] |
rGS-GNPs | Electrode modifier | NE | 200 nM | 0.2–10 µM | AA | Not tested | [42] |
Fe2O3 NPs | Electrode modifier | ACh | 1.04 µM | 2.5–60 µM | Glucose, albumin, DA, NE and AA | Not tested | [167] |
Pd/NPG | Electrode modifier | DA | 1 µM | 1–220 µM | AA, UA, NE, epinephrine and catechol | Not tested | [168] |
CHIT/Fe@AuNPs | Electrode modifier | ACh | 0.005 µM | 0.005–400 µM | AA, UA, DA, lactic acid, heparin sodium, CuSO4, KCl, NaCl and MgCl2 | Healthy and AD plasma samples | [169] |
Fe2O3/rGO-PEDOT | Electrode modifier | ACh | 4 nM | 4 nM–800 µM | AA, bilirubin, urea, UA, 4-acetamidophenol and glucose | Healthy and AD serum samples | [170] |
Nanomaterial | Role | Biomarker | LOD | Linear Range | Selectivity Tested | Real Sample Tested | Ref |
---|---|---|---|---|---|---|---|
RGO/AuFe3O4/Pt | Electrode modifier | H2O2 | 0.1 µM | 0.5 µM–11.5 mM | UA, AA and glucose | Living cells | [172] |
ZnO-PVA | Electrode modifier | H2O2 | 9.13 nM | 1–17 µM | AA, lactic acid, urea and glucose | Human blood serum samples | [173] |
CuS/RGO | Electrode modifier | H2O2 | 0.27 µM | 5–1500 µM | AA, UA, DA, acetaminophen, citric acid and glucose | Human serum and urine samples | [174] |
CNPs | Electrode modifier | H2O2 | 0.1 pM | 0.1 pM–0.1 µM | Glucose, sodium nitrite and UA | Not tested | [175] |
PIL/PB/CNT | Electrode modifier | Superoxide anion | 0.42 µM | 1–228 µM | O2, tertbutylhydroperoxide, −OCl, OH, OtBu, ONOO− | Living cells | [176] |
Nanomaterial | Role | Biomarker | LOD | Linear Range | Selectivity Tested | Real Sample Tested | Ref |
---|---|---|---|---|---|---|---|
MB | Electrode modifier | ApoE4 | 2.34 pM | 2.93–366 pM | Not tested | CSF, serum and plasma | [178] |
AuNPs | Label | Aβ | 4.21 pM | 4.43–2.77 nM | |||
3D-Au-PAMAM | Electrode modifier | Tau-441 | 50 fM | 0.18–109 pM | BSA, HSA, IgG and Hb | Plasma and tissue samples | [179] |
TDP-43 | 0.287 pM | 1–349 pM | |||||
ABTS-PDDA/CNTs | Electrode modifier | Aβ | 0.11 nM | 22.2–842 nM | Metal ions, amino acids, AA, DA, UA, lactic acid and glucose | Plasma and hippocampus of normal and AD rats | [181] |
Cu2+ | 0.04 µM | 0.1–10 µM | |||||
CNT-PIL NLC | Electrode modifier Label | Aβo | 2.2 pM | 0.04−8.86 nM | Metal ions, amino acids, other isoforms of Aβ | AD rat brain | [182] |
Aβf | 4.4 pM | ||||||
Au nanodendrites | Electrode modifier | miRNA-101 | 91.4 pM | 0.1 pM–100 pM | BSA other miRNAs | Serum samples | [183] |
ApoE4 | 2.09 fM | 2.93 fM–2.93 pM | |||||
Tau | 1.29 fM | 2.18 fM–2.18 pM | |||||
Aβ | 1.9 fM | 22.2 fM–22.2 pM |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toyos-Rodríguez, C.; García-Alonso, F.J.; de la Escosura-Muñiz, A. Electrochemical Biosensors Based on Nanomaterials for Early Detection of Alzheimer’s Disease. Sensors 2020, 20, 4748. https://doi.org/10.3390/s20174748
Toyos-Rodríguez C, García-Alonso FJ, de la Escosura-Muñiz A. Electrochemical Biosensors Based on Nanomaterials for Early Detection of Alzheimer’s Disease. Sensors. 2020; 20(17):4748. https://doi.org/10.3390/s20174748
Chicago/Turabian StyleToyos-Rodríguez, Celia, Francisco Javier García-Alonso, and Alfredo de la Escosura-Muñiz. 2020. "Electrochemical Biosensors Based on Nanomaterials for Early Detection of Alzheimer’s Disease" Sensors 20, no. 17: 4748. https://doi.org/10.3390/s20174748
APA StyleToyos-Rodríguez, C., García-Alonso, F. J., & de la Escosura-Muñiz, A. (2020). Electrochemical Biosensors Based on Nanomaterials for Early Detection of Alzheimer’s Disease. Sensors, 20(17), 4748. https://doi.org/10.3390/s20174748