Obstacle Detection and Safely Navigate the Autonomous Vehicle from Unexpected Obstacles on the Driving Lane
Abstract
:1. Introduction
- Pixel label optimization of images as a small obstacle or hindrance on the road detected by using an MRF model.
- Navigating an autonomous vehicle on a roadway from unexpected obstacle.
- Section 2—Reviews the relevant works carried out and developed in the past few years.
- Section 3—Introduces the method for detecting the physical obstacles or hindrances on the road and predicts the steering wheel angle for AV.
- Section 4—Shows demonstration and simulation.
- Section 5—Discusses the results and its comparison.
2. Related Work
3. Method
- (a)
- In the first model, we used various stochastic techniques (such as curvature prepotential, gradient potential, and depth variance potential) to segment obstacles in the image from Markov random field (MRF) frames. These three techniques measure pixel-level images to extract useful information and store it for orientation. In this method, each pixel in the node of interest was distributed in the MRF. Finally, instead of using OR gates, we used AND gates to combine the results of previous techniques.
- (b)
- In the second model, semantic segmentation technology was used to segment paths and filter outliers and other important obstacles.
- (c)
- Third model was used to predict the steering wheel angle of the autonomous vehicle. We analyzed the unexpected obstacle on the roadway and determined the threat factor (). This threat factor helped us to ignore that obstacle or consider as accident risk.
3.1. The Markov Random Field (MRF) Model
3.2. Gradient Potential
3.3. Curvature Prior Potential
3.4. Depth Variance Potential
3.5. Pairwise Potential
3.6. Determination of the Obstacle Threat Value in the Image
3.7. DNN-based Autonomous Vehicle Driving Model
Algorithm 1 Pseudocode for Predicting the Steering Angle |
#Nvidia Model |
Lambda: Output shape: 400 × 600 × 3 |
Image normalization to avoid saturation and make gradients work better. |
#2D Convolution Neural Network for handle features. |
Convolution1: 5 × 5, filter: 24, strides: 2 × 2, activation: ELU |
Convolution2: 5 × 5, filter: 24, strides: 2 × 2, activation: ELU |
Convolution3: 5 × 5, filter: 48, strides: 2 × 2, activation: ELU |
Convolution4: 3 × 3, filter: 64, strides: 1 × 1, activation: ELU |
Convolution5: 3 × 3, filter: 64, strides: 1 × 1, activation: ELU |
#Dropout avoids overfitting |
Drop out (0.5) |
#Fully Connected Layer for predicting the steering angle. |
Fully connected 1: neurons: 100, activation: ELU |
Fully connected 2: neurons: 50, activation: ELU |
Fully connected 3: neurons: 10, activation: ELU |
Fully connected 4: neurons: 1 (output) |
model.compile(Adam(lr = 0.0001), loss=’mse’) |
return model |
4. Dataset
5. Results and Comparisons
5.1. Quantitative Results
5.1.1. Model Performance
5.1.2. Path Follow
5.2. Qualitative Results
5.2.1. Appearance Challenges
5.2.2. Distance and Size Challenges
5.2.3. Cluttering and Shape Challenges
5.2.4. Prediction of Steering Wheel Angle
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Tran, N. Global Status Report on Road Safety; World Health Organization: Geneva, Switzerland, 2018; pp. 5–11. [Google Scholar]
- Jeppsson, H.; Östling, M.; Lubbe, N. Real life safety benefits of increasing brake deceleration in car-to-pedestrian accidents: Simulation of Vacuum Emergency Braking. Accid. Anal. Prev. 2018, 111, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Tefft, B.C. The Prevalence of Motor Vehicle Crashes Involving Road Debris, United States, 2011–2014. Age 2016, 20, 10-1. [Google Scholar]
- American Association of State Highway and Transportation Officials (AASHTO). Highway Safety Manual; AASHTO: Washington, DC, USA, 2010. [Google Scholar]
- Andreopoulos, A.; Tsotsos, J.K. 50 Years of object recognition: Directions forward. Comput. Vis. Image Underst. 2013, 117, 827–891. [Google Scholar] [CrossRef]
- Poczter, S.L.; Jankovic, L.M. The Google car: Driving toward a better future? J. Bus. Case Stud. 2013, 10, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Fan, C.K. Autonomous vehicles, risk perceptions and insurance demand: An individual survey in China. Transp. Res. Part A Policy Pract. 2019, 124, 549–556. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, H.; Zhang, Y.; Yao, D. Integrated Variable Speed Limits and Lane-Changing Control for Freeway Lane-Drop Bottlenecks. IEEE Access 2020, 8, 54710–54721. [Google Scholar] [CrossRef]
- Mehmood, A.; Liaquat, M.; Bhatti, A.I.; Rasool, E. Trajectory Planning and Control for Lane-Change of Autonomous Vehicle. In Proceedings of the 2019 5th International Conference on Control, Automation and Robotics (ICCAR), Beijing, China, 19–22 April 2019. [Google Scholar] [CrossRef]
- Ko, W.; Chang, D.E. Cooperative Adaptive Cruise Control Using Turn Signal for Smooth and Safe Cut-In. In Proceedings of the 2018 18th International Conference on Control, Automation and Systems (ICCAS), Yongpyong Resort, Seoul, Korea, 17–20 October 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Katare, D.; El-Sharkawy, M. Embedded System Enabled Vehicle Collision Detection: An ANN Classifier. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Q.; Fan, Z.; Jia, Y. TOF Lidar Development in Autonomous Vehicle. In Proceedings of the 2018 IEEE 3rd Optoelectronics Global Conference (OGC), Shenzhen, China, 4–7 September 2018. [Google Scholar] [CrossRef]
- Islam, K.T.; Wijewickrema, S.; Raj, R.G.; O’Leary, S. Street Sign Recognition Using Histogram of Oriented Gradients and Artificial Neural Networks. J. Imaging 2019, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Bulumulle, G.; Boloni, L. Reducing Side-Sweep Accidents with Vehicle-to-Vehicle Communication. J. Sens. Actuator Netw. 2016, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.-K.; Ho, C.-Y.; Huang, Y.-H.; Huang, C.-W.; Kuo, Y.-X.; Chung, Y.-C. Intelligent Vehicle Collision-Avoidance System with Deep Learning. In Proceedings of the 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Chengdu, China, 26–30 October 2018. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems; Touretzky, D.S., Mozer, M.C., Hasselmo, M.E., Eds.; Mit Press: Nevada, NV, USA, 2012. [Google Scholar]
- Yang, Z.; Zhang, Y.; Yu, J.; Cai, J.; Luo, J. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018. [Google Scholar]
- Bojarski, M.; Del Testa, D.; Jacket, L.; Firner, B.; Flepp, B.; Muller, U.; Zieba, K. End to end learning for self-driving cars. arXiv 2016, arXiv:1604.07316. [Google Scholar]
- Bhavsar, P.; Das, P.; Paugh, M.; Dey, K.; Chowdhury, M. Risk Analysis of Autonomous Vehicles in Mixed Traffic Streams. Transp. Res. Rec. J. Transp. Res. Board 2017, 2625, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Geng, L.G.L.; Sun, J.; Xiao, Z.; Zhang, F.; Wu, J. Combining CNN and MRF for road detection. Comput. Electr. Eng. 2018, 70, 895–903. [Google Scholar] [CrossRef]
- Elfes, A. Using occupancy grids for mobile robot perception and navigation. Computer 1989, 22, 46–57. [Google Scholar] [CrossRef]
- Li, Y.; Ruichek, Y. Building variable resolution occupancy grid map from stereoscopic system—A quadtree based approach. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, Australia, 23–26 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 744–749. [Google Scholar]
- Homm, F.; Kaempchen, N.; Ota, J.; Burschka, D. Efficient occupancy grid computation on the GPU with lidar and radar for road boundary detection. In Proceedings of the 2010 IEEE Intelligent Vehicles Symposium (IV), La Jolla, CA, USA, 21–24 June 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1006–1013. [Google Scholar]
- Zang, A.; Chen, X.; Trajcevski, G. High Definition Digital Elevation Model System vision paper. In Proceedings of the 29th International Conference on Scientific and Statistical Database Management, Chicago, IL, USA, 27–29 June 2017; pp. 1–6. [Google Scholar]
- Oniga, F.; Nedevschi, S. Processing Dense Stereo Data Using Elevation Maps: Road Surface, Traffic Isle, and Obstacle Detection. IEEE Trans. Veh. Technol. 2009, 59, 1172–1182. [Google Scholar] [CrossRef]
- Oniga, F.; Nedevschi, S. Polynomial curb detection based on dense stereovision for driving assistance. In Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems, Funchal, Madeira Island, Portugal, 19–22 September 2010; pp. 1110–1115. [Google Scholar]
- Du, X.; Tan, K.K.; Htet, K.K.K. Vision-based lane line detection for autonomous vehicle navigation and guidance. In Proceedings of the 2015 10th Asian Control Conference (ASCC), Sutera Harbour Resort, Sabah, Malaysia, 31 May–3 June 2015. [Google Scholar]
- Aufrere, R.; Mertz, C.; Thorpe, C. Multiple sensor fusion for detecting location of curbs, walls, and barriers. In Proceedings of the IEEE IV2003 Intelligent Vehicles Symposium, Columbus, OH, USA, 9–11 June 2003; pp. 126–131. [Google Scholar]
- Michalke, T.; Kastner, R.; Fritsch, J.; Goerick, C. A self-adaptive approach for curbstone/roadside detection based on human-like signal processing and multi-sensor fusion. In Proceedings of the 2010 IEEE Intelligent Vehicles Symposium (IV), San Diego, CA, USA, 21–24 June 2010; pp. 307–312. [Google Scholar]
- Hata, A.Y.; Osório, F.S.; Wolf, D.F. Robust curb detection and vehicle localization in urban environments. In Proceedings of the 2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA, 8–11 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1257–1262. [Google Scholar]
- Dolson, J.; Baek, J.; Plagemann, C.; Thrun, S. Upsampling range data in dynamic environments. In Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010; pp. 1141–1148. [Google Scholar]
- Jun, T.; Jian, L.; Xiangjing, A.; Hangen, H. Robust Curb Detection with Fusion of 3D-Lidar and Camera Data. J. Sens. 2014, 14, 9046–9073. [Google Scholar] [CrossRef] [Green Version]
- Rabe, C.; Franke, U.; Gehrig, S. Fast detection of moving objects in complex scenarios. In Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, 13–15 June 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 398–403. [Google Scholar]
- Lenz, P.; Ziegler, J.; Geiger, A.; Röser, M. Sparse scene flow segmentation for moving object detection in urban environments. In Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 926–932. [Google Scholar]
- Broggi, A.; Cattani, S.; Patander, M.; Sabbatelli, M.; Zani, P. A full-3D voxel-based dynamic obstacle detection for urban scenario using stereo vision. In Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, The Netherlands, 6–9 October 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 71–76. [Google Scholar]
- Hadsell, R.; Sermanet, P.; Ben, J.; Erkan, A.; Scoffier, M.; Kavukcuoglu, K.; Muller, U.; LeCun, Y. Learning long-range vision for autonomous off-road driving. J. Field Robot. 2009, 26, 120–144. [Google Scholar] [CrossRef] [Green Version]
- Ess, A.; Schindler, K.; Leibe, B.; Van Gool, L. Object Detection and Tracking for Autonomous Navigation in Dynamic Environments. Int. J. Robot. Res. 2010, 29, 1707–1725. [Google Scholar] [CrossRef] [Green Version]
- Bernini, N.; Bertozzi, M.; Castangia, L.; Patander, M.; Sabbatelli, M. Real-time obstacle detection using stereo vision for autonomous ground vehicles: A survey. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014. [Google Scholar]
- Pfeiffer, D.; Franke, U. Towards a Global Optimal Multi-Layer Stixel Representation of Dense 3D Data. In Proceedings of the BMVC, Dundee, UK, 29 August–2 September 2011. [Google Scholar]
- Manduchi, R.; Castaño, A.; Talukder, A.; Matthies, L. Obstacle Detection and Terrain Classification for Autonomous Off-Road Navigation. Auton. Robot. 2005, 18, 81–102. [Google Scholar] [CrossRef] [Green Version]
- Broggi, A.; Buzzoni, M.; Felisa, M.; Zani, P. Stereo Obstacle Detection in Challenging Environments: The VIAC Experience, IV. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Zhou, J.; Li, B. Robust Ground Plane Detection with Normalized Homography in Monocular Sequences from a Robot Platform. In Proceedings of the 2006 International Conference on Image Processing, Atlanta, GA, USA, 8–11 October 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 3017–3020. [Google Scholar]
- Kumar, S.; Karthik, M.S.; Krishna, K.M.; Kumar, S. Markov Random Field based small obstacle discovery over images. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 494–500. [Google Scholar]
- Luong, Q.-T.; Weber, J.; Koller, D.; Malik, J. An integrated stereo-based approach to automatic vehicle guidance. In Proceedings of the Proceedings of IEEE International Conference on Computer Vision, Boston, MA, USA, 20–23 June 1995. [Google Scholar]
- Williamson, T.A. A high-performance Stereo Vision System for Obstacle Detection. Ph.D. Thesis, Robotics Institute Carnegie Mellon University, Pittsburg, PA, USA, September 1998. [Google Scholar]
- Hancock, J.A. High-Speed Obstacle Detection for Automated Highway Applications; Carnegie Mellon University: Pittsburg, CA, USA, May 1997. [Google Scholar]
- Labayrade, R.; Aubert, D.; Tarel, J.-P. Real time obstacle detection in stereovision on non-flat road geometry through "v-disparity" representation. In Proceedings of the Intelligent Vehicle Symposium 2002 IEEE IVS-02, Versailles, France, 18–20 June 2002; IEEE: Piscataway, NJ, USA, 2002. [Google Scholar]
- Goldbeck, J.; Huertgen, B. Lane detection and tracking by video sensors. In Proceedings of the 199 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems (Cat. No.99TH8383), Tokyo, Japan, 5–8 October 1999. [Google Scholar]
- Aufrère, R.; Chapuis, R.; Chausse, F. A Model-Driven Approach for Real-Time Road Recognition, Machine Vision and Applications 13; Springer: Aubière Cedex, France, November 2001. [Google Scholar] [CrossRef]
- Aufrère, R.; Chapuis, R.; Chausse, F. A fast and robust vision-based road following algorithm. In Proceedings of the IEEE Intelligent Vehicles Symposium 2000, Dearborn, MI, USA, 3–5 October 2000; IEEE: Piscataway, NJ, USA, 2000; pp. 192–197. [Google Scholar]
- Takahashi, A.; Ninomiya, Y. Model-based lane recognition. In Proceedings of the IEEE Intelligent Vehicles Symposium 1996, Tokyo, Japan, 19–20 September 1996; pp. 201–206. [Google Scholar]
- Trucco, E.; Verri, A. Introductory Techniques for 3-D Computer Vision; Prentice-Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Udacity Self Driving Car. Available online: https://github.com/udacity/self-driving-car (accessed on 20 October 2019).
- Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013, 32, 1231–1237. [Google Scholar] [CrossRef] [Green Version]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset for Semantic Urban Scene Understanding. 2016. In Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef] [Green Version]
- Pinggera, P.; Ramos, S.; Gehrig, S.; Franke, U.; Rother, C.; Mester, R. Lost and Found: Detecting small road hazards for self-driving vehicles. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016. [Google Scholar]
- Pinggera, P.; Franke, U.; Mester, R. High-performance long-range obstacle detection using stereo vision. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015. [Google Scholar]
- Kanzow, C.; Yamashita, N.; Fukushima, M. Levenberg–Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints. J. Comput. Appl. Math. 2004, 172, 375–397. [Google Scholar] [CrossRef] [Green Version]
- Wedel, A.; Badino, H.; Rabe, C.; Loose, H.; Franke, U.; Cremers, D. B-spline modeling of road surfaces with an application to free space estimation. IEEE Trans. Intell. Transp. Syst. 2009, 10, 572–583. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the KDD, Portland, OR, USA, 4 September 1996. [Google Scholar]
- Guttman, A. R-trees: A Dynamic Index Structure for Spatial Searching. In Proceedings of the 1984 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, 18–21 June 1984; pp. 47–57. [Google Scholar]
- Leutenegger, S.T.; Lopez, M.A.; Edgington, J. STR: A Simple and Efficient Algorithm for R-tree Packing. In Proceedings of the 13th International Conference on Data Engineering, Birmingham, UK, 7–11 April 1997. [Google Scholar]
- Ramos, S.; Gehrig, S.; Pinggera, P.; Franke, U.; Rother, C. Detecting Unexpected Obstacles for Self-driving Cars: Fusing Deep Learning and Geometric Modeling. arXiv 2016, arXiv:1612.06573. [Google Scholar]
- Hirschmuller, H. Stereo Processing by Semiglobal Matching and Mutual Information. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 30, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. arXiv 2016, arXiv:1511.07122. [Google Scholar]
- Wang, C.; Komodakis, N.; Paragios, N. Markov Random Field modeling, inference & learning in computer vision & image understanding: A survey. Comput. Vis. Image Underst. 2013, 117, 1610–1627. [Google Scholar] [CrossRef] [Green Version]
- Li, S.Z. Markov Random Field Modeling in Image Analysis; Springer Science and Business Media: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Savchynskyy, B. Discrete Graphical Models—An Optimization Perspective. Found. Trends® Comput. Graph. Vis. 2019, 11, 160–429. [Google Scholar] [CrossRef]
- Freno, A.; Trentin, E. Markov Random Fields; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- M Pauly, M.; Gross, M.; Kobbelt, L.P. Efficient simplification of point-sampled surfaces. In Proceedings of the IEEE Visualization 2002 VIS, Boston, MA, USA, 27 October–1 November 2002; pp. 163–170. [Google Scholar]
- Fernandez, C.; Fernández-Llorca, D.; Stiller, C.; Sotelo, M.Á. Curvature-based curb detection method in urban environments using stereo and laser. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea, 28 June–1 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 579–584. [Google Scholar]
- Shabaninia, E.; Naghsh-Nilchi, A.R.; Kasaei, S. High-order Markov random field for single depth image super-resolution. IET Comput. Vis. 2017, 11, 683–690. [Google Scholar] [CrossRef]
- Boykov, Y.; Kolmogorov, V. An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1124–1137. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, Y.; Matsui, Y.; Toyoda, H.; Mukozaka, N.; Ihori, A.; Abe, T.; Takabe, M.; Mizuno, S. A 3.2kHz, 13-bit Optical Absolute Rotary Encoder with a CMOS Profile Sensor. IEEE Sens. J. 2008, 8, 1430–1436. [Google Scholar] [CrossRef]
- Kemal Alkin Gunbay, Mert Arikan, Mehmet Turkan. Autonomous Cars: Vision based Steering Wheel Angle Estimation. arXiv 2019, arXiv:1901.10747.
- Tian, Y.; Pei, K.; Jana, S.; Ray, B. Deeptest: Automated testing of deep-neural-network-driven autonomous cars. In Proceedings of the 40th International Conference on Software Engineering, Gothenburg, Sweden, 27 May–3 June 2018. [Google Scholar] [CrossRef]
- Houenou, A.; Bonnifait, P.; Cherfaoui, V.; Yao, W. Vehicle Trajectory Prediction Based on Motion Model and Maneuver Recognition. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 4363–4369. [Google Scholar] [CrossRef] [Green Version]
- Suarez-Alvarez, M.M.; Pham, D.T.; Prostov, M.Y.; Prostov, Y.I. Statistical approach to normalization of feature vectors and clustering of mixed datasets. Proc. R. Soc. A Math. Phys. Eng. Sci. 2012, 468, 2630–2651. [Google Scholar] [CrossRef]
- About Feature Scaling and Normalization. Available online: https://sebastianraschka.com/Articles/2014_about_feature_scaling.html (accessed on 16 November 2018).
Camera | ZED M |
---|---|
Frame per second | 30 fps |
Resolution | 2 × (1280 × 720) |
RGB sensor type | 1/3″ 4MP CMOS |
Field of view | Max. 90° (H) × 60° (V) × 100° (D) |
Exposure time | Set exposure to 50% of camera framerate |
Focal length | 2.8 mm (0.11″)—f/2.0 |
Interface | USB 3.0 Type-C port |
Proposed Method | Dataset Size after Expansion | |
---|---|---|
Size of dataset | 1224 | 2448 |
Size of training dataset | 980 | 1958 |
Size of validation dataset | 244 | 490 |
Size of testing dataset (contain obstacle) | 52 | 104 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haris, M.; Hou, J. Obstacle Detection and Safely Navigate the Autonomous Vehicle from Unexpected Obstacles on the Driving Lane. Sensors 2020, 20, 4719. https://doi.org/10.3390/s20174719
Haris M, Hou J. Obstacle Detection and Safely Navigate the Autonomous Vehicle from Unexpected Obstacles on the Driving Lane. Sensors. 2020; 20(17):4719. https://doi.org/10.3390/s20174719
Chicago/Turabian StyleHaris, Malik, and Jin Hou. 2020. "Obstacle Detection and Safely Navigate the Autonomous Vehicle from Unexpected Obstacles on the Driving Lane" Sensors 20, no. 17: 4719. https://doi.org/10.3390/s20174719
APA StyleHaris, M., & Hou, J. (2020). Obstacle Detection and Safely Navigate the Autonomous Vehicle from Unexpected Obstacles on the Driving Lane. Sensors, 20(17), 4719. https://doi.org/10.3390/s20174719