A Security Concept Based on Scaler Distribution of a Novel Intrusion Detection Device for Wireless Sensor Networks in a Smart Environment
Abstract
:1. Introduction
Motivation and Novelty
2. Related Work
2.1. Existing Relation between Sensors and Smart Environments
2.2. Wireless Sensor Networks’ Vulnerabilities and Threats
3. The Newly Proposed Intrusion Detection Device (IDS)
3.1. The IDS Model
3.2. The IDS Performance against Attacks
START S1: Sensor_1 SS: Suspected_Sensor SSid: Suspected_Sensor_ID TT: Trust_Table BL: Blacklisted_List FS: Feedback_Signal_for_isolation r: SS_request CTS: Clear_to_Send_message S: All_Sensors_in_the_network If SS sends r to S1 then // Intruder asks sensor_1 to share information with it Get SSid; // The IDS acknowledges the suspected sensors identity If SSid ∈ TT then // IDS determining if the suspected node is in the trust table Deliver CTS to S1; // IDS delivering a clear to send signal to sensor_1 Else Deliver FS to S; // IDS delivering feedback signal to all the sensors, including Sensor_1 Store SSid in BL; // IDS storing the suspected sensors ID in the backlisted list End if End if End if END |
START S1: Sensor_1 RS: Rogue_Sensor RSid: Rogue_Sensor_ID TT: Trust_Table P: Packets BL: Blacklisted_List FS: Feedback_Signal_for_isolation r: SS_request S: All_Sensors_in_the_network If RS drops P then // rogue sensor starts dropping packets sent by Sensor_1 Alert S1; // alert sensor_1 to search for new route Deliver FS to S; // IDS delivering feedback signal to all the sensors, including Sensor_1 Store RSid in BL; // IDS storing the suspected sensors ID in the backlisted list End if END |
START i: int k: int n: int SA: Sensor_Area NS’: Number_of_Sensor_at_time _a NS: Number_of_Sensor_in the_network_initially TT: Trust_Table IS: Intruder_Sensor ISid: Intruder_sensor_ID BL: Blacklisted_List FS: Feedback_Signal_for_isolation S: All_Sensors_in_the_network k = 0 For i → 0 to n i = i + 1 k = k + 1 If k = NS then // IDS comparing the number of sensors NS’ in the sensor area at present to the one in TT Conclude SA is safe; Else Locate IS; Get ISid; Broadcast F.S to S; // IDS Broadcasting an F.S which contains the intruder sensors ID and location Store ISid in BL; // IDS storing the Intruder_Sensor ID in the backlisted list End if End if END |
3.3. Scaler Distribution of the IDS and the Cooperation
3.4. Advantages of the Newly Proposed Intrusion Detection Device
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, X.; He, J.; Wei, Q. EDDK: Energy-efficient distributed deterministic key management for wireless sensor networks. Eur. J. Wirel. Commun. Netw. 2011, 2011, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Grover, J.; Sharma, S. Security issues in wireless sensor network—A review. In Proceedings of the 2016 5th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Noida, India, 7–9 September 2016; pp. 397–404. [Google Scholar]
- Krontiris, I. Intrusion Prevention and Detection in Wireless Sensor Networks. Ph.D. Thesis, Universität Mannheim, Mannheim, Germany, 2008. [Google Scholar]
- Kumar, Y.; Munjal, R.; Kumar, K. Wireless sensor networks and security challenges. Int. J. Comput. Appl. RTMC 2012, 9, 17–21. [Google Scholar]
- Perrig, A.; Stankovic, J.; Wagner, D. Security in wireless sensor networks. Commun. ACM 2004, 47, 53–57. [Google Scholar] [CrossRef]
- Wang, Y.; Attebury, G. Byrav Ramamurthy A survey of security issues in wireless sensor networks. CSE J. Artic. 2006, 8, 2–23. [Google Scholar]
- Zhu, S.; Setia, S.; Jajodia, S. LEAP: Efficient security mechanisms for large-scale distributed sensor networks. ACM Trans. Sens. Netw. 2006, 2, 500–528. [Google Scholar] [CrossRef]
- Girao, J.; Westhoff, D.; Mykletun, E.; Araki, T. TinyPEDS: Tiny persistent encrypted data storage in asynchronous wireless sensor networks. Ad Hoc Netw. 2006, 5, 1073–1089. [Google Scholar] [CrossRef]
- Raj, B.; Mudali, U.K. Sensor Science and Technology; Alpha Science International Ltd.: Oxford, UK, 2017; ISBN 9781842659403. [Google Scholar]
- Patil, S.; Chaudhari, S. DoS attack prevention technique in wireless sensor networks. Procedia Comput. Sci. 2016, 79, 715–721. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Singh, J.; Singh, R. WRHT: A hybrid technique for detection of Wormhole attack in wireless sensor networks. Mob. Inf. Syst. 2016, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sonu, J.L.; Malar, K.J. Detection of Sybil Attack in Wireless Sensor Networks. Int. Res. J. Eng. Technol. 2017, 4, 1717–1718. [Google Scholar]
- Jamshidi, M.; Darwesh, A.M.; Lorenc, A.; Ranjbari, M.; Meybodi, M.R. A precise algorithm for detecting malicious sybil nodes in mobile wireless sensor networks. IEIE Trans. Smart Process. Comput. 2018, 7, 457–466. [Google Scholar] [CrossRef]
- Wazid, M.; Das, A.K.; Bhat, K.V.; Vasilakos, A.V. LAM-CIoT: Lightweight authentication mechanism in cloud-based IoT environment. J. Netw. Comput. Appl. 2019, 150, 102496. [Google Scholar] [CrossRef]
- Challa, S.; Das, A.K.; Gope, P.; Kumar, N.; Wu, F.; Vasilakos, A.V. Design and analysis of authenticated key agreement scheme in cloud-assisted cyber–physical systems. Futur. Gener. Comput. Syst. 2020, 108, 1267–1286. [Google Scholar] [CrossRef]
- Saia, R.; Carta, S.; Recupero, D.R.; Fenu, G. Internet of entities (IoE): A blockchain-based distributed paradigm for data exchange between wireless-based devices. In Proceedings of the SENSORNETS 2019—Proceedings of the 8th International Conference on Sensor Networks, Prague, Czech Republic, 26–27 February 2019; pp. 77–84. [Google Scholar]
- Alrajeh, N.A.; Khan, S.; Shams, B. Intrusion detection systems in wireless sensor networks: A review. Int. J. Distrib. Sens. Netw. 2013, 2013, 167575. [Google Scholar] [CrossRef]
- da Costa, K.A.P.; Papa, J.P.; Lisboa, C.O.; Munoz, R.; de Albuquerque, V.H.C. Internet of Things: A survey on machine learning-based intrusion detection approaches. Comput. Netw. 2019, 151, 147–157. [Google Scholar] [CrossRef]
- Godala, S.; Vaddella, R.P.V. A study on intrusion detection system in wireless sensor networks. Int. J. Commun. Netw. Inf. Secur. 2020, 12, 127–141. [Google Scholar]
- Neisse, R.; Steri, G.; Fovino, I.N.; Baldini, G. SecKit: A Model-based Security Toolkit for the Internet of Things. Comput. Secur. 2015, 54, 60–76. [Google Scholar] [CrossRef]
- Kumari, S.; Rathi, G.; Attri, P.; Kumar, M. Types of sensors and their applications. Int. J. Eng. Res. Dev. 2014, 10, 72–85. [Google Scholar]
- Pham, C. Wireless Sensor Network: From Theory to Practice; Université de Pau et des Pays de L’Adour: Oran, Algeria, 2013. [Google Scholar]
- Asim, L. Anomaly Detection in Wireless Sensor Networks; University of Jyväskylä: Jyväskylä, Finland, 2016. [Google Scholar]
- Awodele, O.; Onuiri, E.E.; Okolie, S.O. Vulnerabilities in Network Infrastructures and Prevention/Containment Measures. In Proceedings of the Informing Science & IT Education Conference (InSITE); Informing Science Institute: Santa Rosa, CA, USA, 2012. [Google Scholar]
- Sen, J. A survey on wireless sensor network security. Int. J. Commun. Netw. Inf. Secur. 2009, 1, 55–78. [Google Scholar]
- Ekong, V.E.; Ekong, U.O. A survey of security vulnerabilities in wireless sensor networks. Niger. J. Technol. 2016, 35, 392–397. [Google Scholar] [CrossRef]
- Ouafaa, I.; Salah-ddine, K.; Jalal, L.; Said, E.H. Review on the attacks and security protocols for wireless sensor networks. Eur. J. Sci. Res. 2013, 101, 455. [Google Scholar]
- Lupu, T.-G. Main types of attacks in wireless sensor networks. Recent Adv. Signals Syst. 2 2009, 9, 180–185. [Google Scholar]
- Messai, M.-L. Classification of attacks in wireless sensor networks. In Proceedings of the International Congress on Telecommunication and Application, Bejaia, Algeria, 23–24 April 2014. [Google Scholar]
- Riaz, M.N.; Buriro, A.; Mahboob, A. Classification of attacks on wireless sensor networks: A survey. Int. J. Wirel. Microw. Technol. 2018, 8, 15–39. [Google Scholar] [CrossRef]
- Mpitziopoulos, A.; Gavalas, D.; Konstantopoulos, C.; Pantziou, G. A survey on jamming attacks and countermeasures in WSNs. IEEE Commun. Surv. Tutor. 2009, 11, 42–56. [Google Scholar] [CrossRef]
- Alquraishee, A.G.A.; Kar, J. A survey on security in wireless sensor networks. Contemp. Eng. Sci. 2014, 7, 135–147. [Google Scholar] [CrossRef]
- Santhi, G.; Sowmiya, R. A survey on various attacks and countermeasures in wireless sensor networks. Int. J. Comput. Appl. 2017, 159, 7–11. [Google Scholar] [CrossRef]
- Marigowda, C.K.; Shingadi, M. Security vulnerability issues in wireless sensor networks: A short survey. Int. J. Adv. Res. Comput. Commun. Eng. 2013, 2, 2765–2770. [Google Scholar]
- Raymond, D.R.; Midkiff, S.F. Denial-of-service in wireless sensor networks: Attacks and defenses. IEEE Pervasive Comput. 2008, 7, 74–81. [Google Scholar] [CrossRef]
- Xing, K.; Srinivasan, S.S.R.; Rivera, M.; Li, J.; Cheng, X. Attacks and countermeasures in sensor networks: A survey. In Network Security; Huang, S., MacCallum, D., Du, D.Z., Eds.; Springer: Boston, MA, USA, 2005; pp. 1–28. [Google Scholar]
- Asha, P.N.; Mahalakshmi, T.; Archana, S.; Lingareddy, S.C. Wireless sensor networks: A survey on security threats issues and challenges. Int. J. Comput. Sci. Mob. Comput. 2016, 5, 249–267. [Google Scholar]
- Kaplantzis, S.; Shilton, A.; Mani, N.; Şekerciǧlu, Y.A. Detecting selective forwarding attacks in wireless sensor networks using support vector machines. In Proceedings of the 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, Melbourne, QLD, Australia, 3–6 December 2007; pp. 335–340. [Google Scholar]
- Otoum, S.; Kantarci, B.; Mouftah, H. Adaptively supervised and intrusion-aware data aggregation for wireless sensor clusters in critical infrastructures. In Proceedings of the IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, R.; Xiao, X. Intrusion detection in wireless sensor networks with an improved NSA based on space division. J. Sens. 2019, 2019, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Zhou, M.; Jia, W.; Dalil, Z.; Xu, X. Intrusion detection model of wireless sensor networks based on game theory and an autoregressive model. Inf. Sci. 2019, 476, 491–504. [Google Scholar] [CrossRef]
- Almomani, I.; Alenezi, M. Efficient Denial of Service Attacks Detection in Wireless Sensor Networks. J. Inf. Sci. Eng. 2018, 34, 977–1000. [Google Scholar]
- Nadiammai, G.V.; Hemalatha, M. Effective approach toward Intrusion Detection System using data mining techniques. Egypt. Inform. J. 2014, 15, 37–50. [Google Scholar] [CrossRef] [Green Version]
- Kamble, J.R.; Rangdale, S.P. Intrusion detection using data mining techniques. Int. J. Sci. Res. 2014, 3, 1142–1145. [Google Scholar]
- Diro, A.A.; Chilamkurti, N. Distributed attack detection scheme using deep learning approach for Internet of Things. Future Gener. Comput. Syst. 2018, 82, 761–768. [Google Scholar] [CrossRef]
- Mansouri, A.; Majidi, B.; Shamisa, A. Metaheuristic neural networks for anomaly recognition in industrial sensor networks with packet latency and jitter for smart infrastructures. Int. J. Comput. Appl. 2018, 1–10. [Google Scholar] [CrossRef]
- Wang, H.; Gu, J.; Wang, S. An effective intrusion detection framework based on SVM with feature augmentation. Knowl. Based Syst. 2017, 136, 130–139. [Google Scholar] [CrossRef]
- Koti, M.R.; Meshram, M.D. An overview of advance microcontroller bus architecture relate on APB bridge. Int. J. Sci. Res. Publ. 2013, 3, 1–3. [Google Scholar]
- Biham, E. Tutorial on Public Key Cryptography–RSA; Technion: Haifa, Israel, 2005; pp. 386–407. [Google Scholar]
Security Conditions | Proposed IDS | Proposed IDS Concept Ensuring the Conditions | Existing Works |
---|---|---|---|
Confidentiality | Yes | Virtual fence concept ensuring these conditions based on network traffic sniffing and F.S emission for isolation | Yes, but based on cryptography or some form of artificial intelligence |
Authenticity | Yes | Yes, but based on cryptography or some form of artificial intelligence | |
Integrity | Yes | Yes, but based on cryptography or some form of artificial intelligence | |
Freshness | Yes | Yes, but based on cryptography or some form of artificial intelligence | |
Availability | Yes | Yes, but based on cryptography or some form of artificial intelligence | |
Non-repudiation | Yes | Yes, but based on cryptography or some form of artificial intelligence | |
Memory efficiency | Yes | IDS ensuring these conditions through computational function management | No |
Energy Efficiency | Yes | No | |
Intrusion detection | Yes | Trust table and feedback signal concepts ensuring these conditions | Yes, but only largely for specific attacks |
Intrusion isolation | Yes | No |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boni, K.R.C.; Xu, L.; Chen, Z.; Baddoo, T.D. A Security Concept Based on Scaler Distribution of a Novel Intrusion Detection Device for Wireless Sensor Networks in a Smart Environment. Sensors 2020, 20, 4717. https://doi.org/10.3390/s20174717
Boni KRC, Xu L, Chen Z, Baddoo TD. A Security Concept Based on Scaler Distribution of a Novel Intrusion Detection Device for Wireless Sensor Networks in a Smart Environment. Sensors. 2020; 20(17):4717. https://doi.org/10.3390/s20174717
Chicago/Turabian StyleBoni, Kenneth Rodolphe Chabi, Lizhong Xu, Zhe Chen, and Thelma Dede Baddoo. 2020. "A Security Concept Based on Scaler Distribution of a Novel Intrusion Detection Device for Wireless Sensor Networks in a Smart Environment" Sensors 20, no. 17: 4717. https://doi.org/10.3390/s20174717
APA StyleBoni, K. R. C., Xu, L., Chen, Z., & Baddoo, T. D. (2020). A Security Concept Based on Scaler Distribution of a Novel Intrusion Detection Device for Wireless Sensor Networks in a Smart Environment. Sensors, 20(17), 4717. https://doi.org/10.3390/s20174717