Lab-On-Fiber Technology: A Roadmap toward Multifunctional Plug and Play Platforms
Abstract
:1. Introduction
2. Lab-On-Fiber Concept: A Technological Roadmap
2.1. Fabrication Evolution
- -
- “Lab around fiber” includes fiber platforms where functional materials are integrated onto the cylindrical surface of optical fibers;
- -
- “Lab on tip” includes fiber platforms where functional materials are integrated onto the ends of optical fibers; and
- -
- “Lab in fiber” includes fiber platforms where functional materials are infiltrated within the structure to create microstructured optical fibers.
2.2. First LOF Prototypes: New Functionalities and Unprecedented Performance
- -
- SERS lab-in-fiber platforms with enhancement factors up to 107 were recently demonstrated for detection at fM levels [57].
- -
- Label-free lab-on-tip optrodes with gold nanopillars integrated on the fiber tips and local plasmonic resonance were shown to achieve a surprisingly good limit of detection (fM) in a clinically relevant scenario involving free prostate-specific antigen (f-PSA) as a biomarker for prostate cancer [45].
- -
- Lab-around-fiber bioprobes specially designed for thyroglobulin assays (biomarkers for thyroid cancer) demonstrated pM detection levels, thus, creating the technological basis for the application of LOF platforms in conjunction with fine-needle aspiration biopsy platforms, to assess the metastatic nature of locoregional lymph nodes [5].
3. Merging LOF with Optomechanics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cusano, A.; Consales, M.; Crescitelli, A.; Ricciardi, A. Lab-On-Fiber Technology; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Consales, M.; Pisco, M.; Cusano, A. Lab-on-fiber technology: A new avenue for optical nanosensors. Photonic Sens. 2012, 2, 289–314. [Google Scholar] [CrossRef] [Green Version]
- Ricciardi, A.; Crescitelli, A.; Vaiano, P.; Quero, G.; Consales, M.; Pisco, M.; Esposito, E.; Cusano, A. Lab-on-fiber technology: A new vision for chemical and biological sensing. Analyst 2015, 140, 8068–8079. [Google Scholar] [CrossRef] [PubMed]
- Vaiano, P.; Carotenuto, B.; Pisco, M.; Ricciardi, A.; Quero, G.; Consales, M.; Crescitelli, A.; Esposito, E.; Cusano, A. Lab on Fiber Technology for biological sensing applications. Laser Photonics Rev. 2016, 10, 922–961. [Google Scholar] [CrossRef]
- Pissadakis, S. Lab-in-a-fiber sensors: A review. Microelectron. Eng. 2019, 217, 111105. [Google Scholar] [CrossRef]
- Kostovski, G.; Stoddart, P.R.; Mitchell, A. The Optical Fiber Tip: An Inherently Light-Coupled Microscopic Platform for Micro-and Nanotechnologies. Adv. Mater. 2014, 26, 3798–3820. [Google Scholar] [CrossRef]
- Alexander Schmidt, M.; Argyros, A.; Sorin, F. Hybrid Optical Fibers–An Innovative Platform for In-Fiber Photonic Devices. Adv. Opt. Mater. 2016, 4, 13–36. [Google Scholar] [CrossRef]
- Abouraddy, A.F.; Bayindir, M.; Benoit, G.; Hart, S.D.; Kuriki, K.; Orf, N.; Shapira, O.; Sorin, F.; Temelkuran, B.; Fink, Y. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 2007, 6, 336–347. [Google Scholar] [CrossRef]
- Bayindir, M.; Sorin, F.; Abouraddy, A.F.; Viens, J.; Hart, S.D.; Joannopoulos, J.D.; Fink, Y. Metal–insulator–semiconductor optoelectronic fibres. Nature 2004, 431, 826–829. [Google Scholar] [CrossRef]
- Nguyen-Dang, T.; Page, A.G.; Qu, Y.; Volpi, M.; Yan, W.; Sorin, F. Multi-material micro-electromechanical fibers with bendable functional domains. Phys. D Appl. Phys. 2017, 50, 144001. [Google Scholar] [CrossRef]
- Temelkuran, B.; Hart, S.D.; Benoit, G.; Joannopoulos, J.D.; Fink, Y. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 2002, 420, 650–653. [Google Scholar] [CrossRef]
- Russell, P. Photonic crystal fibers. Science 2003, 299, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Argyros, A. Microstructured polymer optical fibers. J. Lightwave Technol. 2009, 27, 1571–1579. [Google Scholar] [CrossRef]
- Deng, D.; Orf, N.; Abouraddy, A.; Stolyarov, A.; Joannopoulos, J.; Stone, H.; Fink, Y. In-fiber semiconductor filament arrays. Nano Lett. 2008, 8, 4265–4269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monat, C.; Domachuk, P.; Eggleton, B.J. Integrated optofluidics: A new river of light. Nat. Photon. 2007, 1, 106. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hafner, J.H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Aspelmeyer, M.; Kippenberg, T.J.; Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 2014, 86, 1391. [Google Scholar] [CrossRef]
- Yablonovitch, E. Photonic Crystals. J. Mod. Opt. 1994, 41, 173–194. [Google Scholar] [CrossRef]
- Hermann, R.J.; Gordon, M.J. Nanoscale Optical Microscopy and Spectroscopy Using Near-Field Probes. Annu. Rev. Chem. Biomol. Eng. 2018, 9, 365–387. [Google Scholar] [CrossRef]
- Fan, X.; White, I.M. Optofluidic microsystems for chemical and biological analysis. Nat. Photon. 2011, 5, 591. [Google Scholar] [CrossRef]
- Maksymov, I.S. Magneto-Plasmonics and Resonant Interaction of Light with Dynamic Magnetisation in Metallic and All-Magneto-Dielectric Nanostructures. Nanomaterials 2015, 5, 577–613. [Google Scholar] [CrossRef] [PubMed]
- O’brien, J.L.; Furusawa, A.; Vučković, J. Photonic quantum technologies. Nat. Photon. 2009, 3, 687–695. [Google Scholar] [CrossRef] [Green Version]
- Galeotti, F.; Pisco, M.; Cusano, A. Self-assembly on optical fibers: A powerful nanofabrication tool for next generation “lab-on-fiber” optrodes. Nanoscale 2018, 10, 22673–22700. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.N. Nanophotonics; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Kik, P.G.; Brongersma, M.L. Surface Plasmon Nanophotonics; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–9. [Google Scholar]
- Koenderink, A.F.; Alù, A.; Polman, A. Nanophotonics: Shrinking light-based technology. Science 2015, 348, 516–521. [Google Scholar] [CrossRef]
- Cusano, A.; Consales, M.; Pisco, M.; Crescitelli, A.; Ricciardi, A.; Esposito, E.; Cutolo, A. Lab on fiber technology and related devices, part I: A new technological scenario; Lab on fiber technology and related devices, part II: The impact of the nanotechnologies. Proc. SPIE 2011, 8001, 800122. [Google Scholar]
- Consales, M.; Ricciardi, A.; Crescitelli, A.; Esposito, E.; Cutolo, A.; Cusano, A. Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes. ACS Nano 2012, 6, 3163–3170. [Google Scholar] [CrossRef]
- Micco, A.; Ricciardi, A.; Pisco, M.; La Ferrara, V.; Cusano, A. Optical fiber tip templating using direct focused ion beam milling. Sci. Rep. 2015, 5, 15935. [Google Scholar] [CrossRef]
- Pisco, M.; Galeotti, F.; Grisci, G.; Quero, G.; Cusano, A. Self-assembled periodic patterns on the optical fiber tip by microsphere arrays. In Proceedings of the 24th International Conference on Optical Fibre Sensors, Curitiba, Brazil, 28 September–2 October 2015. [Google Scholar]
- Pisco, M.; Galeotti, F.; Quero, G.; Grisci, G.; Micco, A.; Mercaldo, L.; Veneri, P.D.; Cusano, A. Nanosphere lithography for advanced all fiber Sers probes. Proc. SPIE 2016, 9916, 99161S. [Google Scholar]
- Pisco, M.; Galeotti, F.; Quero, G.; Grisci, G.; Micco, A.; Mercaldo, L.V.; Veneri, P.D.; Cutolo, A.; Cusano, A. Nanosphere lithography for optical fiber tip nanoprobes. Light Sci. Appl. 2017, 6, e16229. [Google Scholar] [CrossRef] [Green Version]
- Tuniz, A.; Schneidewind, H.; Dellith, J.; Weidlich, S.; Schmidt, M.A. Nanoapertures without nanolithography. ACS Photonics 2019, 6, 30–37. [Google Scholar] [CrossRef]
- Rauch, J.Y.; Lehmann, O.; Rougeot, P.; Abadie, J.; Agnus, J.; Suarez, M.A. Smallest microhouse in the world, assembled on the facet of an optical fiber by origami and welded in the μRobotex nanofactory. J. Vac. Sci. Technol. A 2018, 36, 041601. [Google Scholar] [CrossRef] [Green Version]
- Smythe, E.J.; Dickey, M.D.; Whitesides, G.M.; Capasso, F. A Technique to Transfer Metallic Nanoscale Patterns to Small and Non-Planar Surfaces. ACS Nano 2009, 3, 59–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipomi, D.J.; Martinez, R.V.; Kats, M.A.; Kang, S.H.; Kim, P.; Aizenberg, J.; Capasso, F.; Whitesides, G.M. Patterning the Tips of Optical Fibers with Metallic Nanostructures Using Nanoskiving. Nano Lett. 2011, 11, 632–636. [Google Scholar] [CrossRef] [PubMed]
- Jung, I.W.; Park, B.; Provine, J.; Howe, R.T.; Solgaard, O. Highly Sensitive Monolithic Silicon Photonic Crystal Fiber Tip Sensor for Simultaneous Measurement of Refractive Index and Temperature. J. Lightwave Technol. 2011, 29, 1367–1374. [Google Scholar] [CrossRef]
- Arce, C.L.; de Vos, K.; Claes, T.; Komorowska, K.; van Thourhout, D.; Bienstman, P. Silicon-on-insulatormicroring resonator sensor integrated on an optical fiber facet. IEEE Photonics Technol. Lett. 2011, 23, 890–892. [Google Scholar] [CrossRef]
- Gavan, K.B.; Rector, J.H.; Heeck, K.; Chavan, D.; Gruca, G.; Oosterkamp, T.H.; Iannuzzi, D. Top-down approach to fiber-top cantilevers. Opt. Lett. 2011, 36, 2898–2900. [Google Scholar] [CrossRef]
- Ricciardi, A.; Consales, M.; Quero, G.; Crescitelli, A.; Esposito, E.; Cusano, A. Versatile Optical Fiber Nanoprobes: From Plasmonic Biosensors to Polarization-Sensitive Devices. ACS Photonics 2013, 1, 69–78. [Google Scholar] [CrossRef]
- Pisco, M.; Galeotti, F.; Quero, G.; Iadicicco, A.; Giordano, M.; Cusano, A. Miniaturized Sensing Probes Based on Metallic Dielectric Crystals Self-assembled on Optical Fiber Tips. ACS Photonics 2014, 1, 917–927. [Google Scholar] [CrossRef]
- Pisco, M.; Quero, G.; Iadicicco, A.; Giordano, M.; Galeotti, F.; Cusano, A. Lab on fiber by using the breath figure technique. Opt. Sens. 2013, 8774, 87740R. [Google Scholar]
- Scaravilli, M.; Micco, A.; Castaldi, G.; Coppola, G.; Gioffrè, M.; Iodice, M.; la Ferrara, V.; Galdi, V.; Cusano, A. Excitation of Bloch surface waves on an optical fiber tip. Adv. Opt. Mater. 2018, 6, 1800477. [Google Scholar] [CrossRef]
- Sanders, M.; Lin, Y.; Wei, J.; Bono, T.; Lindquist, R.G. An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers. Biosens. Bioelectron. 2014, 61, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zou, Y.; Lindquist, R.G. A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing. Biomed. Opt. Express 2011, 2, 478–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quero, G.; Zito, G.; Managò, S.; Galeotti, F.; Pisco, M.; de Luca, A.; Cusano, A. Nanosphere Lithography on Fiber: Towards Engineered Lab-On-Fiber SERS Optrodes. Sensors 2018, 18, 680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jan, C.; Jo, W.; Digonnet, M.J.F.; Solgaard, O. Photonic-Crystal-Based Fiber Hydrophone with Sub-100 µPa/√Hz Pressure Resolution. IEEE Photonics Technol. Lett. 2015, 28, 123–126. [Google Scholar] [CrossRef]
- Liberale, C.; Minzioni, P.; Bragheri, F.; de Angelis, F.; di Fabrizio, E.; Cristiani, I. Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation. Nat. Photon. 2007, 1, 723. [Google Scholar] [CrossRef]
- Liberale, C.; Cojoc, G.; Bragheri, F.; Minzioni, P.; Perozziello, G.; la Rocca, R.; la Ferrara, V.; Rajamanickam, V.; di Fabrizio, E.; Cristiani, I. Integrated microfluidic device for single-cell trapping and spectroscopy. Sci. Rep. 2013, 3, 1258. [Google Scholar] [CrossRef] [Green Version]
- Principe, M.; Consales, M.; Micco, A.; Crescitelli, A.; Castaldi, G.; Esposito, E.; la Ferrara, V.; Cutolo, A.; Galdi, V.; Cusano, A. Optical fiber meta-tips. Light Sci. Appl. 2017, 6, e16226. [Google Scholar] [CrossRef] [Green Version]
- Calcerrada, M.; García-Ruiz, C.; González-Herráez, M. Chemical and biochemical sensing applications of microstructured optical fiber-based systems. Laser Photonics Rev. 2015, 9, 604–627. [Google Scholar] [CrossRef] [Green Version]
- Ismaeel, R.; Lee, T.; Ding, M.; Belal, M.; Brambilla, G. Optical microfiber passive components. Laser Photonics Rev. 2013, 7, 350–384. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, R.; Queirós, R.; Soppera, O.; Guerreiro, A.; Jorge, P. Optical Fiber Tweezers Fabricated by Guided Wave Photo-Polymerization. Photonics 2015, 2, 634–645. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, R.; Soppera, O.; Oliva, A.; Guerreiro, A.; Jorge, P. New Trends on Optical Fiber Tweezers. J. Lightwave Technol. 2015, 33, 3394–3405. [Google Scholar] [CrossRef]
- Lou, J.; Wang, Y.; Tong, L. Microfiber Optical Sensors: A Review. Sensors 2014, 14, 5823–5844. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Humbert, G.; Gong, T.; Shum, P.P.; Li, K.; Auguste, J.L.; Wu, Z.; Hu, D.J.J.; Luan, F.; Dinh, Q.X.; et al. Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing. Sens. Actuators B Chem. 2016, 223, 195–201. [Google Scholar] [CrossRef]
- Giaquinto, M.; Ricciardi, A.; Aliberti, A.; Micco, A.; Bobeico, E.; Ruvo, M.; Cusano, A. Light-microgel interaction in resonant nanostructures. Sci. Rep. 2018, 8, 9331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.L.; Liu, Y.X.; Tang, Y.; Zhang, N.; Wu, F.P.; Zhang, B. Fabrication and application of a non-contact double-tapered optical fiber tweezers. Opt. Express 2017, 25, 22480–22489. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Ye, A.-Y.; Wu, Y.; Rao, Y.-J.; Yao, Y.; Xiao, S. Graded-index fiber tip optical tweezers: Numerical simulation and trapping experiment. Opt. Express 2013, 21, 16181–16190. [Google Scholar] [CrossRef]
- Xin, H.; Xu, R.; Li, B. Optical formation and manipulation of particle and cell patterns using a tapered optical fiber. Laser Photonics Rev. 2013, 7, 801–809. [Google Scholar] [CrossRef]
- Paiva, J.; Ribeiro, R.; Cunha, J.; Rosa, C.; Jorge, P. Single Particle Differentiation through 2D Optical Fiber Trapping and Back-Scattered Signal Statistical Analysis: An Exploratory Approach. Sensors 2018, 18, 710. [Google Scholar] [CrossRef] [Green Version]
- Xomalis, A.; Demirtzioglou, I.; Plum, E.; Jung, Y.; Nalla, V.; Lacava, C.; MacDonald, K.F.; Petropoulos, P.; Richardson, D.J.; Zheludev, N.I. Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. Nat. Commun. 2018, 9, 182. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Ghimire, I.; Wu, P.C.; Gurung, S.; Arndt, C.; Tsai, D.P.; Lee, H.W.H. Photonic crystal fiber metalens. Nanophotonics 2019, 8, 443–449. [Google Scholar] [CrossRef]
- Pahlevaninezhad, H.; Khorasaninejad, M.; Huang, Y.; Shi, Z.; Hariri, L.P.; Adams, D.C.; Ding, V.; Zhu, A.; Qiu, C.; Capasso, F.; et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics 2018, 12, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Kippenberg, T.J.; Vahala, K.J. Cavity optomechanics: Back-action at the mesoscale. Science 2008, 321, 1172–1176. [Google Scholar] [CrossRef] [Green Version]
- Metcalfe, M. Applications of cavity optomechanics. Appl. Phys. Rev. 2014, 1, 031105. [Google Scholar] [CrossRef]
- Kilic, O.; Digonnet, M.J.F.; Kino, G.S.; Solgaard, O. External fibre Fabry–Perot acoustic sensor based on a photonic-crystal mirror. Meas. Sci. Technol. 2007, 18, 3049. [Google Scholar] [CrossRef]
- Kilic, O.; Digonnet, M.J.F.; Kino, G.S.; Solgaard, O. Miniature photonic-crystal hydrophone optimized for ocean acoustics. J. Acoust. Soc. Am. 2011, 129, 1837–1850. [Google Scholar] [CrossRef] [Green Version]
- Iannuzzi, D.; Deladi, S.; Gadgil, V.J.; Sanders, R.G.P.; Schreuders, H.; Elwenspoek, M.C. Monolithic fiber-top sensor for critical environments and standard applications. Appl. Phys. Lett. 2006, 88, 053501. [Google Scholar] [CrossRef] [Green Version]
- Deladi, S.; Iannuzzi, D.; Gadgil, V.J.; Schreuders, H.; Elwenspoek, M.C. Carving fiber-top optomechanical transducers from an optical fiber. J. Micromech. Microeng. 2006, 16, 886–889. [Google Scholar] [CrossRef] [Green Version]
- Iannuzzi, D.; Deladi, S.; Berenschot, J.W.; de Man KHeeck, S.; Elwenspoek, M.C. Fiber-top atomic force microscope. Rev. Sci. Instrum. 2006, 77, 106105. [Google Scholar] [CrossRef] [Green Version]
- Gruca, G.; de Man, S.; Slaman, M.; Rector, J.H.; Iannuzzi, D. Ferrule-top micromachined devices: Design, fabrication, performance. Meas. Sci. Technol. 2010, 21, 094033. [Google Scholar] [CrossRef]
- Chavan, D.; Gruca, G.; de Man, S.; Slaman, M.; Rector, J.H.; Heeck, K.; Iannuzzi, D. Ferrule-top atomic force microscope. Rev. Sci. Instrum. 2010, 81, 123702. [Google Scholar] [CrossRef] [Green Version]
- Petrusis, A.; Rector, J.H.; Smith, K.; de Man, S.; Iannuzzi, D. Align-and-shine photolithography. In Proceedings of the 20th International Conference on Optical Fibre Sensors, Edinburgh, UK, 5 October 2009. [Google Scholar]
- Gruca, G.; Chavan, D.; Rector, J.; Heeck, K.; Iannuzzi, D. Demonstration of an optically actuated ferrule-top device for pressure and humidity sensing. Sens. Actuators A Phys. 2013, 190, 77–83. [Google Scholar] [CrossRef]
- Schenato, L.; Palmieri, L.; Gruca, G.; Iannuzzi, D.; Marcato, G.; Pasuto, A.; Galtarossa, A. Fiber optic sensors for precursory acoustic signals detection in rockfall events. J. Eur. Opt. Soc. Rapid Publ. 2012, 7, 777. [Google Scholar] [CrossRef] [Green Version]
- Gruca, G.; Rector, J.H.; Heeck, K.; Iannuzzi, D. Optical fiber ferrule top sensor for humidity measurements. In Proceedings of the 21st International Conference on Optical Fiber Sensors, Ottawa, ON, Canada, 15–19 May 2011. [Google Scholar]
- Zuurbier, P.; de Man, S.; Gruca, G.; Heeck, K.; Iannuzzi, D. Measurement of the casimir force with a ferrule-top sensor. New J. Physics 2011, 13, 023027. [Google Scholar] [CrossRef]
- Gruca, G.; Heeck, K.; Rector, J.; Iannuzzi, D. Demonstration of a miniature all-optical photo acoustic spectrometer based on ferrule-top technology. Opt. Lett. 2013, 38, 1672–1674. [Google Scholar] [CrossRef]
- Pisco, M.; Bruno, F.A.; Galluzzo, D.; Nardone, L.; Gruca, G.; Rijnveld, N.; Bianco, F.; Cutolo, A.; Cusano, A. Opto-mechanical lab-on-fiber seismic sensors detected the Norcia earthquake. Sci. Rep. 2018, 8, 6680. [Google Scholar] [CrossRef] [Green Version]
- Bruno, F.A.; Pisco, M.; Gruca, G.; Rijnveld, N.; Cusano, A. Opto-mechanical lab-on-fiber accelerometers. J. Lightwave Technol. 2020, 38, 1998–2009. [Google Scholar] [CrossRef]
- Bruno, F.A.; Pisco, M.; Gruca, G.; Rijnveld, N.; Cusano, A. Opto-mechanical lab-on-fiber accelerometers. In Proceedings of the Seventh European Workshop on Optical Fibre Sensors, Limassol, Cyprus, 28 August 2019. [Google Scholar]
- Chavan, D.; van de Watering, T.C.; Gruca, G.; Rector, J.H.; Heeck, K.; Slaman, M.; Iannuzzi, D. Ferrule-top nanoindenter: An optomechanical fiber sensor for nanoindentation. Rev. Sci. Instrum. 2012, 83, 115110. [Google Scholar] [CrossRef] [Green Version]
- Van Hoorn, H.; Kurniawan, N.A.; Koenderink, G.H.; Iannuzzi, D. Local dynamic mechanical analysis for heterogeneous soft matter using ferrule-top indentation. Soft Matter 2016, 12, 3066–3073. [Google Scholar] [CrossRef] [Green Version]
- Bos, E.J.; Laan, K.; Helder, M.N. Noninvasive Measurement of Ear Cartilage Elasticity on the Cellular Level: A New Method to Provide Biomechanical Information for Tissue Engineering. Plast. Reconstructive Surg. Global Open 2017, 5, e1147. [Google Scholar] [CrossRef] [Green Version]
- Kamperman, T.; Henke, S.; Zoetebier, B.; Ruiterkamp, N.; Wang, R.; Pouran, B.; Weinans, H.; Karperien, M.; Leijten, J. Nanoemulsion-induced enzymatic crosslinking of tyramine-functionalized polymer droplets. J. Mater. Chem. 2017, 5, 4835–4844. [Google Scholar] [CrossRef] [Green Version]
- Martorina, F.; Casale, C.; Urciuolo, F.; Netti, P.A.; Imparato, G. In vitroactivation of the neuro-transduction mechanism in sensitive organotypic human skin model. Biomaterials 2017, 113, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Tiennot, M.; Paardekam, E.; Iannuzzi, D. Mapping the mechanical properties of paintings via nanoindentation: A new approach for cultural heritage studies. Sci. Rep. 2020, 10, 7924. [Google Scholar] [CrossRef] [PubMed]
- Beekmans, V.; Emanuel, K.S.; Smit, T.H.; Iannuzzi, D. Minimally Invasive Micro-Indentation: Mapping tissue mechanics at the tip of an 18G needle. Sci. Rep. 2017, 7, 11364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giaquinto, M.; Aliberti, A.; Micco, A.; Gambino, F.; Ruvo, M.; Ricciardi, A.; Cusano, A. Cavity-Enhanced Lab-on-Fiber Technology: Toward Advanced Biosensors and Nano-Opto-Mechanical Active Devices. ACS Photonics 2019, 6, 3271–3280. [Google Scholar] [CrossRef]
- Guggenheim, J.A.; Li, J.; Allen, T.J.; Colchester, R.J.; Noimark, S.; Ogunlade, O.; Parkin, I.P.; Papakonstantinou, I.; Desjardins, A.E.; Zhang, E.Z.; et al. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nat. Photonics 2017, 11, 714–719. [Google Scholar] [CrossRef]
- Yao, M.; Wu, J.; Zhang, A.P.; Tam, H.-Y.; Wai, P. Optically 3dμ-printed ferrule-top polymer suspended-mirrordevices. IEEE Sens. J. 2017, 17, 7257–7261. [Google Scholar] [CrossRef]
- Williams, H.E.; Freppon, D.J.; Kuebler, S.M.; Rumpf, R.C.; Melino, M.A. Fabrication of three-dimensional micro-photonic structures on the tip of optical fibers using SU-8. Opt. Express 2011, 19, 22910–22922. [Google Scholar] [CrossRef] [Green Version]
- Melissinaki, V.; Farsari, M.; Pissadakis, S. A Fiber-Endface, Fabry–Perot Vapor Microsensor Fabricated by Multiphoton Polymerization. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 344–353. [Google Scholar] [CrossRef]
- Yao, M.; Ouyang, X.; Wu, J. Optical Fiber-Tip Sensors Based on In-Situ µ-Printed Polymer Suspended-Microbeams. Sensors 2018, 18, 1825. [Google Scholar] [CrossRef] [Green Version]
- Yao, M.; Zhang, Y.; Ouyang, X.; Zhang, A.P.; Tam, H.Y.; Wai, P.K.A. Ultracompact optical fiber acoustic sensors based on a fiber-top spirally-suspended optomechanical microresonator. Opt. Lett. 2020, 45, 3516–3519. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pisco, M.; Cusano, A. Lab-On-Fiber Technology: A Roadmap toward Multifunctional Plug and Play Platforms. Sensors 2020, 20, 4705. https://doi.org/10.3390/s20174705
Pisco M, Cusano A. Lab-On-Fiber Technology: A Roadmap toward Multifunctional Plug and Play Platforms. Sensors. 2020; 20(17):4705. https://doi.org/10.3390/s20174705
Chicago/Turabian StylePisco, Marco, and Andrea Cusano. 2020. "Lab-On-Fiber Technology: A Roadmap toward Multifunctional Plug and Play Platforms" Sensors 20, no. 17: 4705. https://doi.org/10.3390/s20174705
APA StylePisco, M., & Cusano, A. (2020). Lab-On-Fiber Technology: A Roadmap toward Multifunctional Plug and Play Platforms. Sensors, 20(17), 4705. https://doi.org/10.3390/s20174705