Restoration and Calibration of Tilting Hyperspectral Super-Resolution Image
Abstract
:1. Introduction
2. Methods
2.1. Tilting Hyperspectral Super-Resolution Imaging System
2.2. Band Selection of Tilting Hyperspectral Imagery via pSMBS Method
2.3. Optimal Reciprocal Cell Anti-Aliasing Deconvolution Operator
2.4. Modulation Transfer Function of Tilting Hyperspectral Super-Resolution Imaging
3. Restoration of Tilting Hyperspectral Imagery
3.1. Band Selection of Tilting Hyperspectral Imagery
3.2. Tilting Hyperspectral Imagery Restored by Optimal Reciprocal Cell Combined the MTF Method
4. Calibration of Restored Tilting Hyperspectral Imagery
4.1. Calibration of Restored Tilting Hyperspectral Imagery
4.2. Classification of Calibrated Tilting Hyperspectral Imagery
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, F.; Wang, H.-Y.; Ma, W.-P.; Liu, Z.-J. A study on a new method for improving image spatial resolution of sampled optical imager with single array. J. Astronaut. 2006, 27, 227–232. [Google Scholar]
- Zhou, F.; Wang, H.-Y.; Ma, W.-P.; Liu, Z.-J.; Zhou, C.; Chen, Q.; Ouyang, X.; Jiang, B.; Xia, D. Study on Supermode & Tilting Mode Sampling Technology for EO. Spacecr. Recovery Remote Sens. 2005, 3, 43–46. [Google Scholar]
- Wang, J.; Xia, D. Improving the effective resolution of optical remote sensor with adapted reciprocal cell. In Proceedings of the International Conference on Systems & Computer Science, Lille, France, 29–31 August 2012. [Google Scholar]
- Wang, J. Research on Acquisition System Modeling Based Remote Sensing Image Resolution Improvement. Ph.D. Thesis, Nanjing University of Science and Technology, Nanjing, China, 2012. [Google Scholar]
- Zhang, A.; Zhang, X.; Zhao, J. Optimal angle in tilting mode super resolution imaging. Infrared Laser Eng. 2019, 48, 826001. [Google Scholar] [CrossRef]
- Young, S.S. Alias-free image subsampling using Fourier-based windowing methods. Opt. Eng. 2004, 43, 843–855. [Google Scholar] [CrossRef]
- Fang, L.; Tang, K.; Au, O.C.; Katsaggelos, A.K. Anti-aliasing Filter Design for Subpixel Down-sampling via Frequency Domain Analysis. IEEE Trans. Image Process. 2011, 21, 1. [Google Scholar]
- Almansa, A.; Durand, S.; Rougé, B. Measuring and Improving Image Resolution by Adaptation of the Reciprocal Cell. J. Math. Imaging Vis. 2004, 21, 235–279. [Google Scholar] [CrossRef]
- Wang, J.; Xia, D. Tilting Mode Sampling Image Restoration Based on Optimal Reciprocal Cell. J. Astronaut. 2011, 32, 2451–2456. [Google Scholar]
- Jing, W. Super-Resolution Restoration of Super-tilting Mode Remote Sensing Image. Spacecr. Recovery Remote Sens. 2012, 33, 60–66. [Google Scholar]
- Wang, J.-M.; Zhang, A.; Zhao, N.-N.; Meng, X.-G. Influence of tilting angle on tilting sampling aliasing and relationship between aliasing and resolution. Jilin Daxue Xuebao/J. Jilin Univ. 2015, 45, 953–960. [Google Scholar]
- Zhang, Z.; Xia, D. Image Restoration Based on Hybrid Reciprocal Cell-Wavelet. J. Comput. Aided Des. Comput. Graph. 2008, 36, 512–519. [Google Scholar]
- Kligerman, S.; Mehta, D.; Farnadesh, M.; Jeudy, J.; Olsen, K.; White, C. Use of a Hybrid Iterative Reconstruction Technique to Reduce Image Noise and Improve Image Quality in Obese Patients Undergoing Computed Tomographic Pulmonary Angiography. J. Thorac Imaging 2013, 28, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Samei, E.; Ranger, N.T.; Dobbins, J.T., III; Chen, Y. Intercomparison of methods for image quality characterization. I. Modulation transfer function. Med. Phys. 2006, 33, 1454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Kashti, T.; Kella, D.; Frank, T.; Shaked, D.; Ulichney, R.; Fischer, M.; Allebach, J.P. Measuring the Modulation Transfer Function of Image Capture Devices: What Do the Numbers Really Mean? Proc. Spie Int. Soc. Opt. Eng. 2012, 8293, 6. [Google Scholar]
- Alaruri, S.D. Practical methods for characterizing the optical performance of digital camera-based imaging systems: Image processing application using image. Optik 2020, in press. [Google Scholar] [CrossRef]
- Roland, J.K.M. A study of slanted-edge MTF stability and repeatability. In Proceedings of the IS&T/SPIE Electronic Imaging, San Francisco, CA, USA, 8 February 2015; pp. 181–189. [Google Scholar]
- Yu, J.; Yao, L.; Chang, Z.-C.; Sun, W.-D. Improving Image Resolution by 45-Degree Tilting-Mode Sampling. In Proceedings of the International Conference on Wireless Communication and Sensor Networks, Wuhan, China, 11 December 2017. [Google Scholar]
- He, Y.; Zhang, J.; Wang, S. Sparse Representation based Satellite Image Restoration Using Adaptive Reciprocal Cell. Int. J. Multimed. Ubiquitous Eng. 2014, 9, 341–348. [Google Scholar] [CrossRef]
- Zhang, A.; Zhao, J.; Zhao, N.; Kang, X.; Guo, C. Hyperspectral image denoising and antialiasing based on tensor space and reciprocal cell. Infrared Laser Eng. 2018, 47, 1026002. [Google Scholar] [CrossRef]
- Zhang, A.; Hu, S.; Meng, X.; Yang, Y.; Li, H. Toward High Altitude Airship Ground-Based Boresight Calibration of Hyperspectral Pushbroom Imaging Sensors. Remote Sens. 2015, 7, 17297–17311. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Kang, X. Hyperspectral images band selection algorithm through p-value statistic modeling independence. Infrared Laser Eng. 2018, 47, 401–409. [Google Scholar]
- Press, W.H.; Ventolin, W.T.; Bukowski, S. Numerical Recipes in C: The Art of Scientific Computing. Phys. Today 1988, 40, 120–122. [Google Scholar] [CrossRef]
- Holst, G.C. Imaging system fundamentals. Opt. Eng. 2011, 50, 052601. [Google Scholar] [CrossRef]
- Wang, F.; Ni, J.; Guo, R. Modulation transfer function of an imaging system with a hexagonal pixel array detector. Optik 2019, 179, 986–993. [Google Scholar] [CrossRef]
- Takacs, P.Z.; Kotov, I.; Frank, J.; O’Connor, P.; Radeka, V.; Lawrence, M.D. PSF and MTF measurement methods for thick CCD sensor characterization. Proc. SPIE Int. Soc. Opt. Eng. 2010, 7742, 774207–774207-12. [Google Scholar]
- Kurt, R. Point Spread-Function, Line Spread-Function, and Modulation Transfer Function. Radiology 1969, 93, 257–272. [Google Scholar]
- Infante, C. Numerical methods for computing modulation transfer-function area. Displays 1991, 12, 80–83. [Google Scholar] [CrossRef]
- Li, Y.; He, B.; Liu, T. Comparison and Simulation of Subpixel Imaging Modes for Linear CCD. Appl. Mech. Mater. 2012, 236–237, 1032–1037. [Google Scholar] [CrossRef]
- Xia, Z.; Sun, W.; Cen, Y.; Zhang, L.; Wang, N. Predicting cadmium concentration in soils using laboratory and field reflectance spectroscopy. Sci. Total Environ. 2019, 650, 321–334. [Google Scholar]
- Lu, Y.; Du, C.; Yu, C.; Zhou, J. Use of FTIR-PAS combined with chemometrics to quantify nutritional information in rapeseeds (Brassica napus). J. Plant Nutr. Soil Sci. 2015, 177, 927–933. [Google Scholar] [CrossRef]
- Liu, J.; Han, J.; Xie, J.; Wang, H.; Tong, W.; Ba, Y. Assessing heavy metal concentrations in earth-cumulic-orthic-anthrosols soils using Vis-NIR spectroscopy transform coupled with chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 226, 117639. [Google Scholar] [CrossRef]
- He, Z.; Li, M.; Ma, Z. Prediction of dry matter, protein, and acidity in corn steep liquor using near infrared spectroscopy. In Proceedings of the 2015 IEEE 7th International Conference on Awareness Science and Technology (iCAST), Qinhuangdao, China, 22–24 September 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
Name | Parameter |
---|---|
Focus | 23 mm |
Pixel size | 7.4 um |
Length of CCD array | 1600 (max) |
Sampling frequency | 33/15 fps |
S/N | 60 dB |
F-number | 2.4 |
ID | Band ID | p-Value | Band Wavelength (nm) |
---|---|---|---|
1 | 400 | 0.01742 | 673.665 |
2 | 319 | 0.01661 | 614.355 |
3 | 396 | 0.01613 | 670.722 |
4 | 365 | 0.01528 | 647.962 |
5 | 395 | 0.01500 | 669.987 |
6 | 398 | 0.01441 | 672.1934 |
7 | 399 | 0.01412 | 672.929 |
8 | 414 | 0.01408 | 683.975 |
9 | 282 | 0.01381 | 587.486 |
10 | 382 | 0.01357 | 660.433 |
11 | 332 | 0.01336 | 623.831 |
12 | 406 | 0.01330 | 678.081 |
13 | 287 | 0.01308 | 591.108 |
ID | Original Tilting Image | Restored Tilting Image | ||
---|---|---|---|---|
Aliasing Index | MTFA | Aliasing Index | MTFA | |
1 | 0.5899 | 2.1215 | 0.4945 | 2.4936 |
2 | 0.5881 | 2.2001 | 0.4939 | 2.4656 |
3 | 0.5882 | 2.1331 | 0.4935 | 2.5387 |
4 | 0.5884 | 2.2426 | 0.4928 | 2.5306 |
5 | 0.5888 | 2.1365 | 0.4964 | 2.5427 |
6 | 0.5884 | 2.1717 | 0.4947 | 2.5395 |
7 | 0.5890 | 2.1053 | 0.4963 | 2.4817 |
8 | 0.5892 | 2.1901 | 0.4935 | 2.5288 |
9 | 0.5888 | 2.0792 | 0.4948 | 2.4100 |
10 | 0.5877 | 2.1785 | 0.4951 | 2.5089 |
11 | 0.5889 | 2.1687 | 0.4957 | 2.5400 |
12 | 0.5886 | 2.1259 | 0.4931 | 2.4916 |
13 | 0.5877 | 2.0730 | 0.4949 | 2.4199 |
ID | SD | RMSEP | RPD |
---|---|---|---|
1 | 64.7079 | 24.9940 | 2.5889 |
2 | 63.0294 | 23.4184 | 2.6915 |
3 | 66.2383 | 24.8980 | 2.6604 |
4 | 65.1428 | 26.9604 | 2.4162 |
5 | 65.6546 | 24.9530 | 2.6311 |
6 | 65.1358 | 24.6239 | 2.6452 |
7 | 64.5875 | 25.2995 | 2.5529 |
8 | 64.8738 | 28.1241 | 2.3067 |
9 | 61.4836 | 24.2497 | 2.5354 |
10 | 65.3748 | 25.5949 | 2.5542 |
11 | 64.1214 | 25.4107 | 2.5234 |
12 | 64.5751 | 26.7004 | 2.4185 |
13 | 61.3591 | 23.9015 | 2.5672 |
Band ID | RMSE | SD | RPD | R2 |
---|---|---|---|---|
1 | 10.4722 | 43.0816 | 4.1139 | 0.9941 |
2 | 8.8889 | 43.2790 | 4.8689 | 0.9948 |
3 | 11.9998 | 43.6206 | 3.6351 | 0.9939 |
4 | 12.3611 | 43.4579 | 3.5157 | 0.9930 |
5 | 12.7222 | 43.3476 | 3.4072 | 0.9932 |
6 | 11.7500 | 44.1619 | 3.7585 | 0.9938 |
7 | 17.9444 | 43.8490 | 2.4436 | 0.9938 |
8 | 11.4444 | 43.5388 | 3.8044 | 0.9938 |
9 | 7.9444 | 41.2611 | 5.1937 | 0.9953 |
10 | 16.0278 | 43.4253 | 2.6898 | 0.9930 |
11 | 5.1425 | 43.4253 | 5.1425 | 0.9954 |
12 | 4.0982 | 43.8279 | 4.0982 | 0.9943 |
13 | 4.7384 | 41.4607 | 4.7384 | 0.9950 |
Class | Leaf (%) | Background (%) | Others (%) | Total | Overall Accuracy | Kappa Coefficient |
---|---|---|---|---|---|---|
Class 1 | 92.45 | 0.00 | 0.00 | 45.51 | 96.2848% | 0.9365 |
Class 2 | 7.55 | 0.00 | 100.00 | 11.92 | ||
Class 3 | 0.00 | 100.00 | 0.00 | 42.57 | ||
Total | 100.00 | 100.00 | 100.00 | 100.00 |
Class | Leaf (%) | Background (%) | Others (%) | Total | Overall Accuracy | Kappa Coefficient |
---|---|---|---|---|---|---|
Class 1 | 100.00 | 0.00 | 38.46 | 52.82 | 98.1016% | 0.9645 |
Class 2 | 0.00 | 0.00 | 61.54 | 3.04 | ||
Class 3 | 0.00 | 100.00 | 0.00 | 44.14 | ||
Total | 100.00 | 100.00 | 100.00 | 100.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhang, A.; Li, M.; Liu, L.; Kang, X. Restoration and Calibration of Tilting Hyperspectral Super-Resolution Image. Sensors 2020, 20, 4589. https://doi.org/10.3390/s20164589
Zhang X, Zhang A, Li M, Liu L, Kang X. Restoration and Calibration of Tilting Hyperspectral Super-Resolution Image. Sensors. 2020; 20(16):4589. https://doi.org/10.3390/s20164589
Chicago/Turabian StyleZhang, Xizhen, Aiwu Zhang, Mengnan Li, Lulu Liu, and Xiaoyan Kang. 2020. "Restoration and Calibration of Tilting Hyperspectral Super-Resolution Image" Sensors 20, no. 16: 4589. https://doi.org/10.3390/s20164589
APA StyleZhang, X., Zhang, A., Li, M., Liu, L., & Kang, X. (2020). Restoration and Calibration of Tilting Hyperspectral Super-Resolution Image. Sensors, 20(16), 4589. https://doi.org/10.3390/s20164589