Validity of a New 3-D Motion Analysis Tool for the Assessment of Knee, Hip and Spine Joint Angles during the Single Leg Squat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Motion Capture
2.3. Testing Protocol
2.4. Data Processing
2.5. Outcome Measures
2.6. Statistical Analysis
3. Results
3.1. Subjects
3.2. Concurrent Validity
4. Discussion
4.1. Main Findings
4.2. Practical Relevance
4.3. Validity of Motion Capture Systems
4.4. Other Studies
4.5. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kivlan, B.R. Functional Performance Testing of the Hip in Athletes. Int. J. Sports Phys. Ther. 2012, 7, 402–412. [Google Scholar] [PubMed]
- Rojas-Valverde, D.; Gómez-Carmona, C.D.; Gutiérrez-Vargas, R.; Pino-Ortega, J. From big data mining to technical sport reports: The case of inertial measurement units. BMJ Open Sport Exerc. Med. 2019, 5, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Dingenen, B.; Malfait, B.; Vanrenterghem, J.; Verschueren, S.M.P.; Staes, F.F. The reliability and validity of the measurement of lateral trunk motion in two-dimensional video analysis during unipodal functional screening tests in elite female athletes. Phys. Ther. Sport 2014, 15, 117–123. [Google Scholar] [CrossRef]
- Ajdaroski, M.; Tadakala, R.; Nichols, L.; Esquivel, A. Validation of a device to measure knee joint angles for a dynamic movement. Sensors 2020, 20, 1747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graci, V.; Van Dillen, L.R.; Salsich, G.B. Gender differences in trunk, pelvis and lower limb kinematics during a single leg squat. Gait Posture 2012, 36, 461–466. [Google Scholar] [CrossRef]
- Hewett, T.E.; Torg, J.S.; Boden, B.P. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: Lateral trunk and knee abduction motion are combined components of the injury mechanism. Br. J. Sports Med. 2009, 43, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Pollard, C.D.; Sigward, S.M.; Powers, C.M. Limited hip and knee flexion during landing is associated with increased frontal plane knee motion and moments. Clin. Biomech. 2010, 25, 142–146. [Google Scholar] [CrossRef] [Green Version]
- McLean, S.G.; Walker, K.; Ford, K.R.; Myer, G.D.; Hewett, T.E.; Van Den Bogert, A.J. Evaluation of a two dimensional analysis method as a screening and evaluation tool for anterior cruciate ligament injury. Br. J. Sports Med. 2005, 39, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Munro, A.; Herrington, L.; Carolan, M. Reliability of 2-dimensional video assessment of frontal-plane dynamic knee valgus during common athletic screening tasks. J. Sport Rehabil. 2012, 21, 7–11. [Google Scholar] [CrossRef]
- Munro, A.; Herrington, L.; Comfort, P. The Relationship between 2-Dimensional Knee-Valgus Angles During Single-Leg Squat, Single-Leg-Land, and Drop-Jump Screening Tests. J. Sport Rehabil. 2017, 26, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Ekegren, C.L.; Miller, W.C.; Celebrin, R.G.; Eng, J.J.; MacIntyre, D.L. Reliability and validity of observational risk screening in evaluating dynamic knee valgus. J. Orthop. Sports Phys. Ther. 2009, 39, 665–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stensrud, S.; Myklebust, G.; Kristianslund, E.; Bahr, R.; Krosshaug, T. Correlation between two-dimensional video analysis and subjective assessment in evaluating knee control among elite female team handball players. Br. J. Sports Med. 2011, 45, 589–595. [Google Scholar] [CrossRef]
- Willson, J.D.; Davis, I.S. Utility of the frontal plane projection angle in females with patellofemoral pain. J. Orthop. Sports Phys. Ther. 2008, 38, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Willson, J.D.; Ireland, M.L.; Davis, I. Core strenght and lower extremity alignment during single leg squats. Med. Sci. Sports Exerc. 2006, 38, 945–952. [Google Scholar] [CrossRef] [Green Version]
- Stickler, L.; Finley, M.; Gulgin, H. Relationship between hip and core strength and frontal plane alignment during a single leg squat. Phys. Ther. Sport 2015, 16, 66–71. [Google Scholar] [CrossRef] [PubMed]
- McGinley, J.L.; Baker, R.; Wolfe, R.; Morris, M.E. The reliability of three-dimensional kinematic gait measurements: A systematic review. Gait Posture 2009, 29, 360–369. [Google Scholar] [CrossRef]
- Zügner, R.; Tranberg, R.; Timperley, J.; Hodgins, D.; Mohaddes, M.; Kärrholm, J. Validation of inertial measurement units with optical tracking system in patients operated with Total hip arthroplasty. BMC Musculosketlet. Disord. 2019, 20, 52. [Google Scholar] [CrossRef] [Green Version]
- Leardini, A.; Lullini, G.; Giannini, S.; Berti, L.; Ortolani, M.; Caravaggi, P. Validation of the angular measurements of a new inertial-measurement-unit based rehabilitation system: Comparison with state-of-the-art gait analysis. J. NeuroEng. Rehabil. 2014, 11, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Islam, R.; Bennasar, M.; Nicholas, K.; Button, K.; Holland, S.; Mulholland, P.; Price, B.; Al-Amri, M. A Nonproprietary Movement Analysis System (MoJoXlab) Based on Wearable Inertial Measurement Units Applicable to Healthy Participants and Those With Anterior Cruciate Ligament Reconstruction Across a Range of Complex Tasks: Validation Study. JMIR mHealth uHealth 2020, 8, e17872. [Google Scholar] [CrossRef]
- Witchel, H.J.; Oberndorfer, C.; Needham, R.; Healy, A.; Westling, C.E.I.; Guppy, J.H.; Bush, J.; Barth, J.; Herberz, C.; Roggen, D.; et al. Thigh-derived inertial sensor metrics to assess the sit-to-stand and stand-to-sit transitions in the timed up and go (TUG) Task for quantifying mobility impairment in multiple sclerosis. Front. Neurol. 2018, 9, 9. [Google Scholar] [CrossRef]
- De Brabandere, A.; Emmerzaal, J.; Timmermans, A.; Jonkers, I.; Vanwanseele, B.; Davis, J. A Machine Learning Approach to Estimate Hip and Knee Joint Loading Using a Mobile Phone-Embedded IMU. Front. Bioeng. Biotechnol. 2020, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravi, M.; Gallotta, E.; Morrone, M.; Maselli, M.; Santacaterina, F.; Toglia, R.; Foti, C.; Sterzi, S.; Bressi, F.; Miccinilli, S. Concurrent validity and inter trial reliability of a single inertial measurement unit for spatial-temporal gait parameter analysis in patients with recent total hip or total knee arthroplasty. Gait Posture 2020, 76, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Teufl, W.; Miezal, M.; Taetz, B.; Fröhlich, M.; Bleser, G. Validity, test-retest reliability and long-term stability of magnetometer free inertial sensor based 3D joint kinematics. Sensors 2018, 18, 1980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tegner, Y.; Lysholm, J. Rating systems in the evaluation of knee ligament injuries. Clin. Orthop. Relat. Res. 1985, 198, 43–49. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Central Committee on Research Involving Human Subjects. Available online: https://english.ccmo.nl/investigators/legal-framework-for-medical-scientific-research/laws/medical-research-involving-human-subjects-act-wmo (accessed on 24 July 2020).
- Medical Research Involving Human Subjects Act. In Wet Medisch-Wetenschappelijk Onderzoek met Mensen; Staatscourant: Cham, Switzerland, 1998. (In English)
- Tranberg, R.; Saari, T.; Zügner, R.; Kärrholm, J. Simultaneous measurements of knee motion using an optical tracking system and radiostereometric analysis (RSA). Acta Orthop. 2011, 82, 171–176. [Google Scholar] [CrossRef]
- Zügner, R.; Tranberg, R.; Lisovskaja, V.; Shareghi, B.; Kärrholm, J. Validation of gait analysis with dynamic radiostereometric analysis (RSA) in patients operated with total hip arthroplasty. J. Orthop. Res. 2017, 35, 1515–1522. [Google Scholar] [CrossRef]
- Thewlis, D.; Bishop, C.; Daniell, N.; Paul, G. Next-generation low-cost motion capture systems can provide comparable spatial accuracy to high-end systems. J. Appl. Biomech. 2013, 29, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Carse, B.; Meadows, B.; Bowers, R.; Rowe, P. Affordable clinical gait analysis: An assessment of the marker tracking accuracy of a new low-cost optical 3D motion analysis system. Physiotherapy 2013, 99, 347–351. [Google Scholar] [CrossRef]
- SportsLapp. Available online: http://www.sportslapp.com (accessed on 24 July 2020).
- Crossley, K.M.; Zhang, W.J.; Schache, A.G.; Bryant, A.; Cowan, S.M. Performance on the single-leg squat task indicates hip abductor muscle function. Am. J. Sports Med. 2011, 39, 866–873. [Google Scholar] [CrossRef]
- Nakagawa, T.H.; Moriya, E.T.U.; MacIel, C.D.; Serrão, F.V. Trunk, pelvis, hip, and knee kinematics, hip strength, and gluteal muscle activation during a single-leg squat in males and females with and without patellofemoral pain syndrome. J. Orthop. Sports Phys. Ther. 2012, 42, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Whatman, C.; Hing, W.; Hume, P. Kinematics during lower extremity functional screening tests—Are they reliable and related to jogging? Phys. Ther. Sport 2011, 12, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Zeller, B.L.; McCrory, J.L.; Ben Kibler, W.; Uhl, T.L. Differences in kinematics and electromyographic activity between men and women during the single-legged squat. Am. J. Sports Med. 2003, 31, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Slabaugh, G.G. Computing Euler Angles from a Rotation Matrix. Available online: http://gregslabaugh.name/publications/euler.pdf (accessed on 24 July 2020).
- Kuipers, J.B. Quaternions and Rotation Sequences. In Geometry, Integrability and Quantization; Mladenov, I.M., Naber, G.L., Eds.; Coral Press: Sophia, Bulgaria, 2000; pp. 127–143. [Google Scholar]
- Masuda, T.; Ishida, A.; Cao, L.; Morita, S. A proposal for a new definition of the axial rotation angle of the shoulder joint. J. Electromyogr. Kinesiol. 2008, 18, 154–159. [Google Scholar] [CrossRef]
- Dijkstra, F.; den Besten, G. 3Dynamics Angles Definitions for Measuring and Presenting 3D Motions of Human Joints; Factic, B.V., Ed.; Enschede, The Netherlands, 2018. Available online: https://www.researchgate.net/publication/327816713_3Dynamics_angles_definitions_for_measuring_and_presenting_3D_motions_of_human_joints (accessed on 12 August 2020).
- Chan, Y.H. Biostatistics 104. Corrleational analysis. Sing. Med. J. 2005, 46, 153–160. [Google Scholar]
- Morishige, Y.; Harato, K.; Kobayashi, S.; Niki, Y.; Matsumoto, M.; Nakamura, M.; Nagura, T. Difference in leg asymmetry between female collegiate athletes and recreational athletes during drop vertical jump. J. Orthop. Surg. Res. 2019, 14, 1–6. [Google Scholar] [CrossRef]
- Ithurburn, M.P.; Paterno, M.V.; Thomas, S.; Pennell, M.L.; Evans, K.D.; Magnussen, R.A.; Schmitt, L.C. Change in Drop-Landing Mechanics Over 2 Years in Young Athletes After Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2019, 47, 2608–2616. [Google Scholar] [CrossRef]
- King, E.; Richter, C.; Franklyn-Miller, A.; Wadey, R.; Moran, R.; Strike, S. Back to Normal Symmetry? Biomechanical Variables Remain More Asymmetrical Than Normal During Jump and Change-of-Direction Testing 9 Months After Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2019, 47, 1175–1185. [Google Scholar] [CrossRef]
- Eltoukhy, M.; Kelly, A.; Kim, C.Y.; Jun, H.P.; Campbell, R.; Kuenze, C. Validation of the Microsoft Kinect® camera system for measurement of lower extremity jump landing and squatting kinematics. Sports Biomech. 2016, 15, 89–102. [Google Scholar] [CrossRef]
- Peters, A.; Galna, B.; Sangeux, M.; Morris, M.; Baker, R. Quantification of soft tissue artifact in lower limb human motion analysis: A systematic review. Gait Posture 2010, 31, 1–8. [Google Scholar] [CrossRef]
- Kianifar, R.; Lee, A.; Raina, S.; Kulic, D. Classification of squat quality with inertial measurement units in the single leg squat mobility test. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Orlando, FL, USA, 16–20 August 2016; pp. 6273–6276. [Google Scholar]
- Whelan, D.F.; O’Reilly, M.A.; Ward, T.E.; Delahunt, E.; Caulfield, B. Technology in rehabilitation: Evaluating the single leg squat exercise with wearable inertial measurement units. Methods Inf. Med. 2017, 56, 88–94. [Google Scholar] [PubMed] [Green Version]
- Mentiplay, B.F.; Hasanki, K.; Perraton, L.G.; Pua, Y.H.; Charlton, P.C.; Clark, R.A. Three-dimensional assessment of squats and drop jumps using the Microsoft Xbox One Kinect: Reliability and validity. J. Sports Sci. 2018, 36, 2202–2209. [Google Scholar] [CrossRef] [PubMed]
- Seel, T.; Raisch, J.; Schauer, T. IMU-based joint angle measurement for gait analysis. Sensors 2014, 14, 6891–6909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total Group (n = 44) | Female (n = 20) | Male (n = 24) | |
---|---|---|---|
Age (yrs) | 22.8 (3.3) (18–30) | 22.9 (3.6) (18–30) | 22.7 (3.2) (18–30) |
Height (cm) | 175.3 (10.1) (155.0–197.0) | 167 (5.7) (155–177) | 182 (7.4) (170–197) |
Weight (kg) | 72.1 (11.6) (53.6–103.2) | 64.1 (7.1) (53.6–82.2) | 78.9 (10.6) (64.1–103.2) |
Sport participation (hrs/wk) | 5.4 (4.5) (1–25) | 6.9 (5.2) (1–25) | 3.1 (2.4) (1–8) |
Activity level (Tegner score) | 6.5 (1.3) (5–10) | 5.8 (1.1) (3–7) | 7.0 (1.2) (5–10) |
Trial 1 | Knee Flexion/Tilt * | Hip Flexion/Tilt * | Hip Ab- Adduction/Sway | Spine Flexion/Tilt * | Spine Lateral Flexion/Sway |
OptiTrack (°) | 73.8 (9.1) (71.1–76.6) | 60.8 (14.7) (56.3–65.3) | −8.1 (17.1) (−13.3–−2.9) | 13.8 (10.9) (10.5–17.1) | 3.8 (5.7) (2.1–5.6) |
SportsLapp (°) | 73.3 (9.1) (70.6–76.1) | 62.9 (13.4) (58.9–67.1) | −8.5 (18.3) (−13.9–−3.0) | 18.1 (11.4) (14.6–21.6) | 4.6 (10.2) (1.5–7.8) |
Mean diff (°) (95%CI) | −0.5 (−1.5–0.5) | 2.1 (1.3–2.9) | −0.4 (8.2) (–2.5–0.3) | −4.3 (−6.8–−1.17) | 0.8 (8.1) (0.4–3.2) |
Correlation | r = 0.936 | r = 0.985 | ρ = 0.818 | r = 0.713 | ρ = 0.827 |
Trial 2 | Knee Flexion/Tilt * | Hip Flexion/Tilt * | Hip Ab- Adduction/Sway | Spine Flexion/Tilt * | Spine Lateral Flexion/Sway |
OptiTrack (°) | 75.0 (8.6) (72.4–77.6) | 63.7 (14.7) (59.2–58.2) | −13.2 (14.1) (17.5–−8.9) | 16.3 (12.1) (12.6–20.0) | 6.3 (5.0) (4.7–7.8) |
SportsLapp (°) | 73.8 (8.6) (71.2–76.4) | 64.9 (14.1) (60.6–69.2) | −14.5 (14.0) (−18.8–−10.3) | 20.7 (11.9) (17.1–24.4) | 7.4 (11.0) (4.0–10.7) |
Mean diff (°) (95%CI) | −1.2 (−2.2–0.3) | 1.2 (0.5–1.9) | −1.3 (−3.6–1.0) | −4.4 (−7.2–−1.6) | 1.1 (−1.6–3.8) |
Correlation | r = 0.929 | r = 0.988 | ρ = 0.704 | r = 0.708 | ρ = 0.641 |
Trial 3 | Knee Flexion/Tilt * | Hip Flexion/Tilt * | Hip Ab- Adduction/Sway | Spine Flexion/Tilt * | Spine Lateral Flexion/Sway |
OptiTrack (°) | 76.0 (9.2) (73.1–78.8) | 64.7 (13.6) (60.6–68.9) | −14.9 (13.1) (−18.9–−11.0) | 14.7 (11.8) (11.1–18.3) | 5.5 (5.3) (3.9–7.1) |
SportsLapp (°) | 74.6 (8.8) (71.9–77.3) | 66.4 (13.0) (62.4–70.3) | −16.4 (12.5) (−20.2–−12.6) | 19.8 (12.1) (16.1–23.4) | 9.1 (9.4) (6.3–12.0) |
Mean diff (°) (95%CI) | −1.4 (−2.3–−0.4) | 1.7 (0.9–2.5) | −1.5 (−3.8–0.74) | −5.1 (−7.8–−2.4) | 3.6 (1.3–5.9) |
Correlation | r = 0.944 | r = 0.982 | ρ = 0.646 | r = 0.728 | ρ = 0.613 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tak, I.; Wiertz, W.-P.; Barendrecht, M.; Langhout, R. Validity of a New 3-D Motion Analysis Tool for the Assessment of Knee, Hip and Spine Joint Angles during the Single Leg Squat. Sensors 2020, 20, 4539. https://doi.org/10.3390/s20164539
Tak I, Wiertz W-P, Barendrecht M, Langhout R. Validity of a New 3-D Motion Analysis Tool for the Assessment of Knee, Hip and Spine Joint Angles during the Single Leg Squat. Sensors. 2020; 20(16):4539. https://doi.org/10.3390/s20164539
Chicago/Turabian StyleTak, Igor, Willem-Paul Wiertz, Maarten Barendrecht, and Rob Langhout. 2020. "Validity of a New 3-D Motion Analysis Tool for the Assessment of Knee, Hip and Spine Joint Angles during the Single Leg Squat" Sensors 20, no. 16: 4539. https://doi.org/10.3390/s20164539