Analysis of Phenolic Content in Grape Seeds and Skins by Means of a Bio-Electronic Tongue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Working Electrodes Preparation
2.2. Samples
2.3. Voltammetric Characterization and Tests
2.4. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Content: TPC Index and FC Index
3.2. Electrochemical Characterization of the Carbon Composite Electrodes Towards Catechol
3.3. Discrimination Capability of Grape Extracts with An Array of EM-Carbon Electrodes
3.4. E-Tongue: Discrimination Capability and Regression Models to Correlate with Chemical Parameters
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Montealegre, R.R.; Peces, R.R.; Vozmediano, J.C.; Gascueña, J.M.; Romero, E.G. Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. J. Food Compos. Anal. 2006, 19, 687–693. [Google Scholar] [CrossRef]
- Giovinazzo, G.; Grieco, F. Functional Properties of Grape and Wine Polyphenols. Plant Foods Hum. Nutr. 2015, 70, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Moncalvo, A.; Marinoni, L.; Dordoni, R.; Garrido, G.D.; Lavelli, V.; Spigno, G. Waste grape skins: Evaluation of safety aspects for the production of functional powders and extracts for the food sector. Food Addit. Contam. Part A 2016, 33, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.A.; Cheng, V.J.; Zhang, H.; Mros, S.; Ahmed, I.A.M.; Al-Juhaimi, F.Y.; Bekhit, A.A.; McConnell, M. Effect of extraction system and grape variety on anti-influenza compounds from wine production residue. Food Control. 2019, 99, 180–189. [Google Scholar] [CrossRef]
- Ky, I.; Teissedre, P.-L. Characterisation of Mediterranean Grape Pomace Seed and Skin Extracts: Polyphenolic Content and Antioxidant Activity. Molecules 2015, 20, 2190–2207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, I.C.D.S.; Toaldo, I.M.; Burin, V.M.; Bordignon-Luiz, M.T. Extraction optimization for polyphenolic profiling and bioactive enrichment of extractives of non-pomace residue from grape processing. Ind. Crop. Prod. 2018, 112, 593–601. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Ladas, D.; Mavromatis, A. Potential uses and applications of treated wine waste: A review. Int. J. Food Sci. Technol. 2006, 41, 475–487. [Google Scholar] [CrossRef]
- Shi, J.; Yu, J.; Pohorly, J.E.; Kakuda, Y. Polyphenolics in Grape Seeds—Biochemistry and Functionality. J. Med. Food 2003, 6, 291–299. [Google Scholar] [CrossRef]
- Bucić-Kojić, A.; Planinić, M.; Tomas, S.; Bilić, M.; Velić, D. Study of solid–liquid extraction kinetics of total polyphenols from grape seeds. J. Food Eng. 2007, 81, 236–242. [Google Scholar] [CrossRef]
- Shi, J.; Yu, J.; Pohorly, J.; Young, J.C.; Bryan, M.; Wu, Y. Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. J. Food Agric. Environ. 2003, 1, 42–47. [Google Scholar]
- Di Lecce, G.; Arranz, S.; Jáuregui, O.; Tresserra-Rimbau, A.; Rada, P.Q.; Lamuela-Raventós, R.M. Phenolic profiling of the skin, pulp and seeds of Albariño grapes using hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry. Food Chem. 2014, 145, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Nogales-Bueno, J.; Baca-Bocanegra, B.; Rooney, A.; Hernández-Hierro, J.M.; Heredia, F.J.; Byrne, H.J. Linking ATR-FTIR and Raman features to phenolic extractability and other attributes in grape skin. Talanta 2017, 167, 44–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Méndez, M.L.; De Saja, J.A.; González-Antón, R.; García-Hernández, C.; Medina-Plaza, C.; García-Cabezón, C.; Martín-Pedrosa, F. Electronic Noses and Tongues in Wine Industry. Front. Bioeng. Biotechnol. 2016, 4, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newair, E.F.; Kilmartin, P.A.; Garcia, F. Square wave voltammetric analysis of polyphenol content and antioxidant capacity of red wines using glassy carbon and disposable carbon nanotubes modified screen-printed electrodes. Eur. Food Res. Technol. 2018, 244, 1225–1237. [Google Scholar] [CrossRef]
- Beitollahi, H.; Nekooei, S. Application of a modified CuO nanoparticles carbon paste electrode for simultaneous determination of isoperenaline, acetaminophen and N-acetyl-L-cysteine. Electroanalysis 2015, 28, 645–653. [Google Scholar] [CrossRef]
- Tashkhourian, J.; Daneshi, M.; Nami-Ana, F.; Behbahani, M.; Bagheri, A. Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode. J. Hazard. Mater. 2016, 318, 117–124. [Google Scholar] [CrossRef]
- Afkhami, A.; Bahiraei, A.; Madrakian, T. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Mater. Sci. Eng. C 2016, 59, 168–176. [Google Scholar] [CrossRef]
- Arabali, V.; Ebrahimi, M.; Abbasghorbani, M.; Gupta, V.K.; Farsi, M.; Ganjali, M.; Karimi, F. Electrochemical determination of vitamin C in the presence of NADH using a CdO nanoparticle/ionic liquid modified carbon paste electrode as a sensor. J. Mol. Liq. 2016, 213, 312–316. [Google Scholar] [CrossRef]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Ni, Y.; Kokot, S. Glassy carbon electrodes modified with gold nanoparticles for the simultaneous determination of three food antioxidants. Anal. Chim. Acta 2013, 765, 54–62. [Google Scholar] [CrossRef]
- García-Hernandez, C.; Medina-Plaza, C.; Garcia-Cabezon, C.; Blanco, Y.; Fernandez-Escudero, J.; Barajas-Tola, E.; Rodríguez-Pérez, M.A.; Martín-Pedrosa, F.; Rodriguez-Mendez, M.L. Monitoring the Phenolic Ripening of Red Grapes Using a Multisensor System Based on Metal-Oxide Nanoparticles. Front. Chem. 2018, 6, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zagal, J.H.; Griveau, S.; Silva, J.F.; Nyokong, T.; Bedioui, F. Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord. Chem. Rev. 2010, 254, 2755–2791. [Google Scholar] [CrossRef]
- Pingarrón, J.M.; Yáñez-Sedeño, P.; González-Cortés, A. Gold nanoparticle-based electrochemical biosensors. Electrochim. Acta 2008, 53, 5848–5866. [Google Scholar] [CrossRef]
- Reis, R.M.; Valim, R.B.; Rocha, R.S.; Lima, A.S.; Castro, P.S.; Bertotti, M.; Lanza, M.R. The use of copper and cobalt phthalocyanines as electrocatalysts for the oxygen reduction reaction in acid medium. Electrochim. Acta 2014, 139, 1–6. [Google Scholar] [CrossRef]
- Rodriguez-Mendez, M.; Gay, M.; De Saja, J.A. New insights into sensors based on radical bisphthalocyanines. J. Porphyr. Phthalocyanines 2009, 13, 1159–1167. [Google Scholar] [CrossRef]
- Wu, L.; Deng, D.; Jin, J.; Lu, X.; Chen, J. Nanographene-based tyrosinase biosensor for rapid detection of bisphenol A. Biosens. Bioelectron. 2012, 35, 193–199. [Google Scholar] [CrossRef]
- Wang, Y.; Hasebe, Y. Tyrosinase-modified carbon felt-based flow-biosensors: The role of ultra-sonication in shortening the enzyme immobilization time and improving the sensitivity for p-chlorophenol. J. Environ. Sci. 2011, 23, 1038–1043. [Google Scholar] [CrossRef]
- Wang, Y.; Zhai, F.; Hasebe, Y.; Jia, H.; Zhang, Z. A highly sensitive electrochemical biosensor for phenol derivatives using a graphene oxide-modified tyrosinase electrode. Bioelectrochemistry 2018, 122, 174–182. [Google Scholar] [CrossRef]
- Redin, G.G.I.; Silva, T.; Vicentini, F.C.; Fatibello-Filho, O. Effect of carbon black functionalization on the analytical performance of a tyrosinase biosensor based on glassy carbon electrode modified with dihexadecylphosphate film. Enzym. Microb. Technol. 2018, 116, 41–47. [Google Scholar] [CrossRef]
- Tahara, Y.; Toko, K. Electronic Tongues–A Review. IEEE Sens. J. 2013, 13, 3001–3011. [Google Scholar] [CrossRef]
- Śliwińska-Bartel, M.; Wiśniewska, P.; Dymerski, T.; Namiesnik, J.; Wardencki, W. Food Analysis Using Artificial Senses. J. Agric. Food Chem. 2014, 62, 1423–1448. [Google Scholar] [CrossRef] [PubMed]
- Cetó, X.; Apetrei, C.; Del Valle, M.; Rodriguez-Mendez, M.; Cetó, X. Evaluation of red wines antioxidant capacity by means of a voltammetric e-tongue with an optimized sensor array. Electrochim. Acta 2014, 120, 180–186. [Google Scholar] [CrossRef]
- Gutiérrez-Capitán, M.; Capdevilla, F.; Vila-Planas, J.; Domingo, C.; Büttgenbach, S.; Llobera, A.; Puig-Pujol, A.; Jimenez-Jorquera, C. Hybrid Electronic Tongues Applied to the Quality Control of Wines. J. Sens. 2014, 2014, 1–10. [Google Scholar] [CrossRef]
- Garcia-Hernandez, C.; Garcia-Cabezon, C.; Martin-Pedrosa, F.; de Saja, J.A.; Rodriguez-Mendez, M.L. Analysis of Musts and Wines with a bio-electronic tongue based on Tyrosinase and Glucose oxidase. Food Chem. 2019, 289, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Hernandez, C.; Salvo-Comino, C.; Martin-Pedrosa, F.; Garcia-Cabezon, C.; Rodriguez-Mendez, M. Analysis of red wines using an electronic tongue and infrared spectroscopy. Correlations with phenolic content and color parameters. LWT 2020, 118, 108785. [Google Scholar] [CrossRef]
- Kirsanov, D.; Mednova, O.; Vietoris, V.; Kilmartin, P.A.; Legin, A. Towards reliable estimation of an “electronic tongue” predictive ability from PLS regression models in wine analysis. Talanta 2012, 90, 109–116. [Google Scholar] [CrossRef]
- García-Hernández, C.; Medina-Plaza, C.; García-Cabezón, C.; Martin-Pedrosa, F.; Del Valle, I.; De Saja, J.A.; Rodriguez-Mendez, M. An Electrochemical Quartz Crystal Microbalance Multisensor System Based on Phthalocyanine Nanostructured Films: Discrimination of Musts. Sensors 2015, 15, 29233–29249. [Google Scholar] [CrossRef] [Green Version]
- Leardi, R.; González, A.L. Genetic algorithms applied to feature selection in PLS regression: How and when to use them. Chemom. Intell. Lab. Syst. 1998, 41, 195–207. [Google Scholar] [CrossRef]
- Tsai, C.-F.; Eberle, W.; Chu, C.-Y. Genetic algorithms in feature and instance selection. Knowl.-Based Syst. 2013, 39, 240–247. [Google Scholar] [CrossRef]
- Linaje, M.; Quintanilla, M.C.; Gonzalez, A.; Del Valle, J.L.; Alcaide, G.; Rodriguez-Mendez, M. Improvement of the synthesis of lutetium bisphthalocyanine using the Taguchi method. Analyst 2000, 125, 341–346. [Google Scholar] [CrossRef]
- Compendium of International Methods of Analysis of Wines and Musts. Available online: http://www.oiv.int/en/technical-standards-and-documents/methods-of-analysis/compendium-of-international-methods-of-analysis-of-wines-and-musts-2-vol (accessed on 20 July 2020).
- Resnikoff, H.L.; Wells, R.O. Wavelet Data Compression. In Wavelet Analysis; Springer: New York, NY, USA, 1998; ISBN 978-1-4612-6830-7. [Google Scholar]
- Arora1, P.; Ansari, S.H.; Nazish, I. Bio-Functional Aspects of Grape Seeds-A Review. Int. J. Phytomed. 2010, 2, 177–185. [Google Scholar]
- Jackson, R.S. Chemical Constituents of Grapes and Wine. Wine Sci. 2000, 232–280. [Google Scholar]
- Revilla, E.; Escalona, J.M.; Alonso, E.; Kovac, V. The phenolic com- position of table grapes. In Food Flavors: Generation, Analysis and Process Influence; Charalambous, G., Ed.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1995; pp. 132–141. [Google Scholar]
- Pekić, B.; Kovač, V.; Alonso, E.; Revilla, E. Study of the extraction of proanthocyanidins from grape seeds Food Chem. Food Chem. 1998, 61, 201–206. [Google Scholar] [CrossRef]
- Fuleki, T.; Ricardo da Silva, J.M. Catechin and procyanidin composition of seeds from grape cultivars grown in Ontario. J. Agric. Food Chem. 1997, 45, 1156–1160. [Google Scholar] [CrossRef]
- Xia, E.-Q.; Deng, G.-F.; Guo, Y.-J.; Li, H.-B. Biological Activities of Polyphenols from Grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Togores, J. Tratadode Enología; Mundi-Prensa Libros: Madrid, Spain, 2010; pp. 168–197. [Google Scholar]
- Pinelo, M.; Arnous, A.; Meyer, A.S. Upgrading of grape skins: Significance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci. Technol. 2006, 17, 579–590. [Google Scholar] [CrossRef]
- Ribereau-Gayon, P.; Dubourdieu, D.; Doneche, B.; Lonvaud, A.; Glories, Y.; Maujean, A.; Branco, J.M. Handbook of Enology, the Microbiology of Wine and Vinifications; John and Wiley & Sons: Hoboken, NJ, USA, 2006; pp. 1432–1485. [Google Scholar]
- Petrucci, R.; Astolfi, P.; Greci, L.; Firuzi, O.; Saso, L.; Marrosu, G. A spectroelectrochemical and chemical study on oxidation of hydroxycinnamic acids in aprotic medium. Electrochim. Acta 2007, 52, 2461–2470. [Google Scholar] [CrossRef]
- Makhotkina, O.; Kilmartin, P.A. The use of cycle voltammetry for wine analysis: Determination of polyphenols and free sulfur dioxide. Anal. Chim. Acta 2010, 668, 155–165. [Google Scholar] [CrossRef]
- Martín, M.G.; De Saja, J.A.; Muñoz, R.; Rodriguez-Mendez, M. Multisensor system based on bisphthalocyanine nanowires for the detection of antioxidants. Electrochim. Acta 2012, 68, 88–94. [Google Scholar] [CrossRef]
- García-Hernández, C.; García-Cabezón, C.; Martin-Pedrosa, F.; De Saja, J.A.; Rodriguez-Mendez, M.L. Layered composites of PEDOT/PSS/nanoparticles and PEDOT/PSS/phthalocyanines as electron mediators for sensors and biosensors. Beilstein J. Nanotechnol. 2016, 7, 1948–1959. [Google Scholar] [CrossRef] [Green Version]
- Sharpe, E.; Bradley, R.; Frasco, T.; Jayathilaka, D.; Marsh, A.; Andreescu, S. Metal oxide based multisensory array and portable database for field analysis of antioxidants. Sens. Actuators B Chem. 2014, 193, 552–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina-Plaza, C.; De Saja, J.A.; Rodriguez-Mendez, M.L. Bioelectronic tongue based on lipidic nanostructured layers containing phenol oxidases and lutetium bisphthalocyanine for the analysis of grapes. Biosens. Bioeletr. 2014, 57, 276–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martens, H. Reliable and relevant modelling of real world data: A personal account of the development of PLS Regression. Chemom. Intell. Lab. Syst. 2001, 58, 85–95. [Google Scholar] [CrossRef]
- Mevik, B.H.; Wehrens, R. Introduction to the PLS Package. Available online: https://cran.r-project.org/web/packages/pls/vignettes/pls-manual.pdf (accessed on 20 May 2020).
Sample | Extractions | TPC Index | FC Index |
---|---|---|---|
GRAPE SKIN | Cabernet (C) | 12.2 | 11.8 |
Garnacha (G) | 8.5 | 7.98 | |
Juan García (J) | 15.1 | 10.2 | |
Mencia Regadio (MR) | 16.7 | 15.5 | |
Mencia Secano (MS) | 14.0 | 12.8 | |
Prieto Picudo (P) | 21.1 | 16.3 | |
Rufete (R) | 5.5 | 6.8 | |
Tempranillo (T) | 12.1 | 12.3 | |
GRAPE SEED | Cabernet (C) | 63.8 | 57.6 |
Garnacha (G) | 53.5 | 47.7 | |
Juan García (J) | 78.6 | 46.6 | |
Mencia Regadio (MR) | 70.7 | 50.1 | |
Mencia Secano (MS) | 70.6 | 41.0 | |
Prieto Picudo (P) | 152.4 | 73.2 | |
Rufete (R) | 62.1 | 50.6 | |
Tempranillo (T) | 40.3 | 32.3 |
Sample | Parameter | R2c (a) | RMSEC (b) | R2V (c) | RMSEV (d) | LV (e) |
---|---|---|---|---|---|---|
Skin extract | FC index | 0.999 | 0.292 | 0.999 | 0.413 | 5 |
Seed extract | FC index | 0.998 | 2.09 | 0.996 | 3.11 | 5 |
Skin extract | TPC index | 0.998 | 0.532 | 0.996 | 0.798 | 4 |
Seed extract | TPC index | 0.999 | 2.58 | 0.997 | 4.15 | 7 |
Sample | Parameter | R2c (a) | RMSEC (b) | R2V (c) | RMSEV (d) | LV (e) |
---|---|---|---|---|---|---|
Skin extract | FC index | 0.998 | 0.475 | 0.994 | 0.868 | 4 |
Seed extract | FC index | 0.998 | 2.06 | 0.992 | 4.67 | 6 |
Skin extract | TPC index | 0.998 | 0.496 | 0.993 | 1.1 | 4 |
Seed extract | TPC index | 0.998 | 3.55 | 0.994 | 6.25 | 6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Cabezon, C.; Gobbi Teixeira, G.; Dias, L.G.; Salvo-Comino, C.; García-Hernandez, C.; Rodriguez-Mendez, M.L.; Martin-Pedrosa, F. Analysis of Phenolic Content in Grape Seeds and Skins by Means of a Bio-Electronic Tongue. Sensors 2020, 20, 4176. https://doi.org/10.3390/s20154176
Garcia-Cabezon C, Gobbi Teixeira G, Dias LG, Salvo-Comino C, García-Hernandez C, Rodriguez-Mendez ML, Martin-Pedrosa F. Analysis of Phenolic Content in Grape Seeds and Skins by Means of a Bio-Electronic Tongue. Sensors. 2020; 20(15):4176. https://doi.org/10.3390/s20154176
Chicago/Turabian StyleGarcia-Cabezon, Cristina, Guilherme Gobbi Teixeira, Luís Guimaraes Dias, Coral Salvo-Comino, Celia García-Hernandez, Maria Luz Rodriguez-Mendez, and Fernando Martin-Pedrosa. 2020. "Analysis of Phenolic Content in Grape Seeds and Skins by Means of a Bio-Electronic Tongue" Sensors 20, no. 15: 4176. https://doi.org/10.3390/s20154176
APA StyleGarcia-Cabezon, C., Gobbi Teixeira, G., Dias, L. G., Salvo-Comino, C., García-Hernandez, C., Rodriguez-Mendez, M. L., & Martin-Pedrosa, F. (2020). Analysis of Phenolic Content in Grape Seeds and Skins by Means of a Bio-Electronic Tongue. Sensors, 20(15), 4176. https://doi.org/10.3390/s20154176