Simulation and Experiment for Growth of High-Quality and Large-Size AlN Seed Crystals by Spontaneous Nucleation
Abstract
:1. Introduction
2. Experimental Setup and Numerical Model
- (I).
- Heating by the increasing power of top and main heater
- (II).
- Nucleation suppressing by maintaining negative temperature difference
- (III).
- Nucleation by decreasing the temperature of the crystallization zone
- (IV).
- Crystal growth by maintaining positive temperature difference
- (V).
- Cooling and annealing
3. Results and Discussion
3.1. Influence of Gas Convection onTemperature Field
3.2. Influence of Insulating Layer Numbers on Temperature
3.3. The Thermal Distribution Feature of Growth Chamber
3.4. Optimization of Axial Temperature Field
3.5. Optimization of Radial Temperature Field
3.6. Quality Characterization of AlN Crystal
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Strite, S.; Morkoç, H. GaN, AlN, and InN: A review. J. Vac. Sci. Technol. B 1992, 10, 1237–1266. [Google Scholar] [CrossRef]
- Taniyasu, Y.; Kasu, M.; Makimoto, T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 2006, 441, 325–328. [Google Scholar] [CrossRef]
- Caliendo, C.; D’Amico, A.; Lo Castro, F. Lamb Waves Propagation along 3C-SiC/AlN Membranes for Application in Temperature-Compensated, High-Sensitivity Gravimetric Sensors. Sensors 2013, 13, 550–564. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.X.; Allard, B.; Buchman, S.; Williams, S.; Byer, R.L. LED deep UV source for charge management of gravitational reference sensors. Class. Quantum Grav. 2006, 23, S141–S150. [Google Scholar] [CrossRef]
- Vilhunen, S.; Särkkä, H.; Sillanpää, M. Ultraviolet light-emitting diodes in water disinfection. Environ. Sci. Pollut. Res. 2009, 16, 439–442. [Google Scholar] [CrossRef]
- Xu, Z.; Sadler, B.M. Ultraviolet communications: Potential and state-of-the-art. IEEE Commun. Mag. 2008, 46, 67–73. [Google Scholar]
- Zheng, W.; Huang, F.; Zheng, R.S.; Wu, H.L. Low-Dimensional Structure Vacuum-Ultraviolet-Sensitive (λ <200 nm) Photodetector with Fast-Response Speed Based on High-Quality AlN Micro/Nanowire. Adv. Mater. 2015, 27, 3921–3927. [Google Scholar]
- Li, J.; Fan, Z.Y.; Dahal, R.; Nakarmi, M.L.; Lin, J.Y.; Jiang, H.X. 200 nm deep ultraviolet photodetectors based on AlN. Appl. Phys. Lett. 2006, 89, 213510. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Zhou, G.G.; Qin, Z.Y.; Zhou, Q.; Zheng, R.S.; Wu, H.L.; Sun, Z.H. Luminescence characterizations of freestanding bulk single crystalline aluminum nitride towards optoelectronic application. Crystengcomm 2017, 19, 5522–5527. [Google Scholar] [CrossRef]
- Herro, Z.; Zhuang, D.; Schlesser, R.; Collazo, R.; Sitar, Z. Seeded growth of AlN on N- and Al-polar <0001> AlN seeds by physical vapor transport. J. Cryst. Growth 2006, 286, 205–208. [Google Scholar] [CrossRef]
- Grandusky, J.R.; Smart, J.A.; Mendrick, M.C.; Schowalter, L.J.; Chen, K.X.; Schubert, E.F. Pseudomorphic growth of thick n-type AlxGa1−xN layers on low-defect-density bulk AlN substrates for UV LED applications. J. Cryst. Growth 2009, 311, 2864–2866. [Google Scholar] [CrossRef]
- Slack, G.A.; McNelly, T.F. Growth of high purity AlN crystals. J. Cryst. Growth 1976, 34, 263–279. [Google Scholar] [CrossRef]
- Bickermann, M.; Epelbaum, B.M.; Winnacker, A. Characterization of bulk AlN with low oxygen content. J. Cryst. Growth 2004, 269, 433–442. [Google Scholar] [CrossRef]
- Singh, N.B.; Berghmans, A.; Zhang, H.; Wait, T.; Clarke, R.C.; Zingaro, J.; Golombeck, J.C. Physical vapor transport growth of large AlN crystals. J. Cryst. Growth 2003, 250, 107–112. [Google Scholar] [CrossRef]
- Jin, L.; Wu, H.L.; Zhang, Y.; Qin, Z.Y.; Shi, Y.Z.; Cheng, H.J.; Zheng, R.S.; Chen, W.H. The growth mode and Raman scattering characterization of m-AlN crystals grown by PVT method. J. Alloys Compd. 2020, 824, 153935. [Google Scholar] [CrossRef]
- Zheng, R.S.; Wu, H.L. Development of bulk AlN single-crystal growth technology. J. Shenzhen Univ. Sci. Eng. 2010, 27, 433–439. [Google Scholar]
- Chen, W.H.; Qin, Z.Y.; Tian, X.Y.; Zhong, X.H.; Sun, Z.H.; Li, B.K.; Zheng, R.S.; Guo, Y.; Wu, H.L. The Physical Vapor Transport Method for Bulk AlN Crystal Growth. Molecules 2019, 24, 1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, B.; Nakano, S.; Kakimoto, K. The impact of pressure and temperature on growth rate and layer uniformity in the sublimation growth of AlN crystals. J. Cryst. Growth 2012, 338, 69–74. [Google Scholar] [CrossRef]
- Liu, L.; Edgar, J.H. Transport effects in the sublimation growth of aluminum nitride. J. Cryst. Growth 2000, 220, 243–253. [Google Scholar] [CrossRef]
- Mokhov, E.N.; Avdeev, O.V.; Barash, I.S.; Chemekova, T.Y.; Roenkov, A.D.; Segal, A.S.; Wolfson, A.A.; Makarov, Y.N.; Ramm, M.G.; Helava, H. Sublimation growth of AlN bulk crystals in Ta crucibles. J. Cryst. Growth 2005, 281, 93–100. [Google Scholar] [CrossRef]
- Mokhov, E.N.; Wolfson, A.A.; Avdeev, A.O.; Nagalyuk, S.S.; Litvin, D.P.; Vasiliev, A.V.; Ramm, M.G.; Helava, H.; Makarov, Y. Sublimation growth of bulk AlN crystals on SiC seeds. In Proceedings of the 9th European Conference on Silicon Carbide and Related Materials, Saint Petersburg, Russia, 2–6 September 2012. [Google Scholar]
- Fu, R.L.; Zhao, Y.L.; Zhou, H.P. Growth habit plane and morphologies of aluminum nitride crystals. J. Synth. Cryst. 2004, 33, 310–315. [Google Scholar]
- Wu, H.L.; Zheng, R.S.; Sun, X.M.; Luo, F.; Yang, F.; Liu, W.; Jing, S.Y. A Novel Method for Growing AlN Single Crystal by Physical Vapor Transport. J. Synth. Cryst. 2007, 36, 1–4. [Google Scholar]
- Hartmann, C.; Wollweber, J.; Dittmar, A.; Irmscher, K.; Kwasniewski, A.; Langhans, F.; Neugut, T.; Bickermann, M. Preparation of Bulk AlN Seeds by Spontaneous Nucleation of Freestanding Crystals. Jpn. J. Appl. Phys. 2013, 52, 08JA06. [Google Scholar] [CrossRef]
- Hartmann, C.; Dittmar, A.; Wollweber, J.; Bickermann, M. Bulk AlN growth by physical vapour transport. Semicond. Sci. Technol. 2014, 29, 084002. [Google Scholar] [CrossRef]
- Gaddy, B.E.; Bryan, Z.; Bryan, I.; Kirste, R.; Xie, J.Q.; Dalmau, R.; Moody, B.; Kumagai, Y.; Nagashima, T.; Kubota, Y.; et al. Vacancy compensation and related donor-acceptor pair recombination in bulk AlN. Appl. Phys. Lett. 2013, 103, 82101. [Google Scholar] [CrossRef]
- Cai, D.; Zheng, L.L.; Zhang, H.; Zhuang, D.; Herro, Z.G.; Schlesser, R.; Sitar, Z. Effect of thermal environment evolution on A1N bulk sublimation crystal growth. J. Cryst. Growth 2007, 306, 39–46. [Google Scholar] [CrossRef]
- Wang, Z.H.; Deng, X.L.; Cao, K.; Wang, J.; Wu, L. Hotzone design and optimization for 2-in. AlN PVT growth process through global heat transfer modeling and simulations. J. Cryst. Growth 2016, 474, 76–80. [Google Scholar] [CrossRef]
- Wu, B.; Ma, R.; Zhang, H.; Prasad, V. Modeling and simulation of AlN bulk sublimation growth systems. J. Cryst. Growth 2004, 266, 303–312. [Google Scholar] [CrossRef]
- Pitts, D.; Donald, R.; Ge, X.S. Heat Transfer, 2rd ed.; Science Press: Beijing, China, 2002; pp. 237–250. [Google Scholar]
- Wang, G.D.; Zhang, L.; Wang, Y.; Shao, Y.L.; Chen, C.M.; Liu, G.X.; Wu, Y.Z.; Hao, X.P. Effect of Temperature Gradient on AlN Crystal Growth by Physical Vapor Transport Method. Cryst. Growth Des. 2019, 19, 6736–6742. [Google Scholar] [CrossRef]
- Sumathi, R.R. Bulk AlN single crystal growth on foreign substrate and preparation of free-standing native seeds. Crystengcomm 2013, 15, 2232–2240. [Google Scholar] [CrossRef] [Green Version]
AlN | W | Mu | Al | Stainless Steel | |
---|---|---|---|---|---|
thermal conductivity, k (W m−1 k−1) | 220 | 175 | 138 | 238 | 44.5 |
isobaric specific heat, Cp (J kg−1 K−1) | 1197 | 132 | 250 | 900 | 475 |
Density, ρ (kg m−3) | 2702 | 17,800 | 10,200 | 2700 | 7850 |
Emissivity, ε | 0.08 | 0.04 | 0.08 | 0.07 | 0.85 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Z.; Chen, W.; Deng, D.; Sun, Z.; Li, B.; Zheng, R.; Wu, H. Simulation and Experiment for Growth of High-Quality and Large-Size AlN Seed Crystals by Spontaneous Nucleation. Sensors 2020, 20, 3939. https://doi.org/10.3390/s20143939
Qin Z, Chen W, Deng D, Sun Z, Li B, Zheng R, Wu H. Simulation and Experiment for Growth of High-Quality and Large-Size AlN Seed Crystals by Spontaneous Nucleation. Sensors. 2020; 20(14):3939. https://doi.org/10.3390/s20143939
Chicago/Turabian StyleQin, Zuoyan, Wenhao Chen, Danxia Deng, Zhenhua Sun, Baikui Li, Ruisheng Zheng, and Honglei Wu. 2020. "Simulation and Experiment for Growth of High-Quality and Large-Size AlN Seed Crystals by Spontaneous Nucleation" Sensors 20, no. 14: 3939. https://doi.org/10.3390/s20143939
APA StyleQin, Z., Chen, W., Deng, D., Sun, Z., Li, B., Zheng, R., & Wu, H. (2020). Simulation and Experiment for Growth of High-Quality and Large-Size AlN Seed Crystals by Spontaneous Nucleation. Sensors, 20(14), 3939. https://doi.org/10.3390/s20143939