Integrated LTE and Millimeter-Wave 5G MIMO Antenna System for 4G/5G Wireless Terminals
Abstract
:1. Introduction
2. Proposed Antenna Design
2.1. LTE Antenna Configuration
2.2. 5G Millimeter-Wave Antenna
2.3. Integrated Design
3. Experimental Results
3.1. Scattering Parameters
3.2. Far-Field Results
3.3. Gain and Efficiency
4. Human Safety Concerns (Specific Absorption Rate and Spatial Power Density)
5. MIMO Performance Analysis
5.1. Envelope Correlation Coefficient (ECC)
5.2. Diversity Gain (DG)
5.3. Mean Effective Gain (MEG)
5.4. Channel Capacity Loss (CCL)
6. Comparison with Related Works
7. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Rinné, M.; Tirkkonen, O. LTE, the radio technology path towards 4G. Comput. Commun. 2010, 33, 1894–1906. [Google Scholar] [CrossRef]
- Zhang, J.; Ariyavisitakul, S.; Tao, M. LTE-advanced and 4G wireless communications [Guest Editorial]. IEEE Commun. Mag. 2012, 50, 102–103. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhao, A. LTE Antenna Design for Mobile Phone With Metal Frame. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 1462–1465. [Google Scholar] [CrossRef]
- Wang, Y.; Du, Z. Wideband monopole antenna with less non ground portion for octa-band WWAN/LTE mobile phones. IEEE Trans. Antennas Propag. 2016, 64, 383–388. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J.; Liu, Y.; Li, Y.; Gulliver, T.A. Joint TAS and Power Allocation for Multiuser M2M Cooperative Networks. IETE Tech. Rev. 2018, 35, 574–580. [Google Scholar] [CrossRef]
- Park, J.-D.; Rahman, M.; Chen, H.N. Isolation Enhancement of Wide-Band MIMO Array Antennas Utilizing Resistive Loading. IEEE Access 2019, 7, 81020–81026. [Google Scholar] [CrossRef]
- Henderson, K.Q.; Latif, S.I.; Lazarou, G.Y.; Sharma, S.K.; Tabbal, A. Multi-slot antennas excited by novel dual-stub loaded microstrip lines for 4g lte bands. Prog. Electromagn. Res. M 2018, 75, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.; Lozano, A.; Soong, A.C.K.; Zhang, J.C. What Will 5G Be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Global Mobile Suppliers Association. The Road to 5G: Drivers, Applications, Requirements and Technical Development. A GSA Executive Report from Ericsson, Huawei and Qualcomm. 2015. Available online: https://www.huawei.com/minisite/5g/img/GSA-the-Road-to-5G.pdf (accessed on 19 November 2015).
- Pi, Z.; Khan, F. An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 2011, 49, 101–107. [Google Scholar] [CrossRef]
- Hussain, N.; Jeong, M.-J.; Abbas, A.; Kim, T.-J.; Kim, N. A Metasurface-Based Low-Profile Wideband Circularly Polarized Patch Antenna for 5G Millimeter-Wave Systems. IEEE Access 2020, 8, 22127–22135. [Google Scholar] [CrossRef]
- Zhang, J.; Ge, X.; Li, Q.; Guizani, M.; Zhang, Y. 5G Millimeter-Wave Antenna Array: Design and Challenges. IEEE Wirel. Commun. 2016, 24, 2–8. [Google Scholar] [CrossRef]
- Qingling, Z.; Li, J. Rain Attenuation in Millimeter Wave Ranges. In Proceedings of the 2006 7th International Symposium on Antennas, Propagation & EM Theory, Guilin, China, 26–29 October 2006; pp. 1–4. [Google Scholar]
- Shayea, I.; Rahman, T.A.; Azmi, M.H.; Islam, R. Real Measurement Study for Rain Rate and Rain Attenuation Conducted Over 26 GHz Microwave 5G Link System in Malaysia. IEEE Access 2018, 6, 19044–19064. [Google Scholar] [CrossRef]
- Sharawi, M.S. Printed Multi-Band MIMO Antenna Systems and Their Performance Metrics [Wireless Corner]. IEEE Antennas Propag. Mag. 2013, 55, 218–232. [Google Scholar] [CrossRef]
- Araújo, D.C.; Maksymyuk, T.; De Almeida, A.L.F.; Maciel, T.F.; Mota, J.C.; Jo, M. Massive MIMO: Survey and future research topics. IET Commun. 2016, 10, 1938–1946. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, W.; Khan, W.T. Small form factor dual band (28/38 GHz) PIFA antenna for 5G applications. In Proceedings of the 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Nagoya, Japan, 19–21 March 2017; pp. 21–24. [Google Scholar]
- Zhu, S.; Liu, H.W.; Chen, Z.; Wen, P. A Compact Gain-Enhanced Vivaldi Antenna Array With Suppressed Mutual Coupling for 5G mmWave Application. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 776–779. [Google Scholar] [CrossRef]
- El-Halwagy, W.; Mirzavand, R.; Melzer, J.; Hossain, M.; Mousavi, P. Investigation of Wideband Substrate-Integrated Vertically-Polarized Electric Dipole Antenna and Arrays for mm-Wave 5G Mobile Devices. IEEE Access 2017, 6, 2145–2157. [Google Scholar] [CrossRef]
- Naqvi, S.I.; Azam, M.A.; Amin, Y.; Arshad, F.; Loo, J.; Tenhunen, H. Tri-Band Antenna Array with Defected Ground Structure for mm-Wave 5G Applications. In Proceedings of the 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS), Singapore, 23–25 February 2019; pp. 590–593. [Google Scholar]
- Jilani, S.F.; Munoz, M.O.; Abbasi, Q.H.; Alomainy, A.; Torrico, M.M.; Abbasi, Q. Millimeter-Wave Liquid Crystal Polymer Based Conformal Antenna Array for 5G Applications. IEEE Antennas Wirel. Propag. Lett. 2018, 18, 84–88. [Google Scholar] [CrossRef] [Green Version]
- Nasir, J.; Jamaluddin, M.H.; Khalily, M.; Kamarudin, M.R.; Ullah, I. Design of a MIMO dielectric resonator antenna for 4G applications. Wireless Pers. Commun. 2016, 88, 525–536. [Google Scholar] [CrossRef]
- Sarkar, D.; Srivastava, K. Compact four-element SRR-loaded dual-band MIMO antenna for WLAN/WiMAX/WiFi/4G-LTE and 5G applications. Electron. Lett. 2017, 53, 1623–1624. [Google Scholar] [CrossRef]
- Parchin, N.O.; Basherlou, H.J.; Al-Yasir, Y.I.A.; Ullah, A.; Abd-Alhameed, R.A.; Noras, J.M. Multi-Band MIMO Antenna Design with User-Impact Investigation for 4G and 5G Mobile Terminals. Sensors 2019, 19, 456. [Google Scholar] [CrossRef] [Green Version]
- Fakih, M.A.; Diallo, A.; Le Thuc, P.; Staraj, R.; Mourad, O.; Rachid, E.A. Optimization of Efficient Dual Band PIFA System for MIMO Half-Duplex 4G/LTE and Full-Duplex 5G Communications. IEEE Access 2019, 7, 128881–128895. [Google Scholar] [CrossRef]
- Li, M.; Xu, Z.; Ban, Y.; Sim, C.; Yu, Z. Eight-port orthogonally dual polarized MIMO antennas using loop structures for 5G smartphone. IET Microw. Antennas Propag. 2017, 11, 1810–1816. [Google Scholar] [CrossRef]
- Li, M.-Y.; Ban, Y.-L.; Xu, Z.; Guo, J.; Yu, Z.-F. Tri-Polarized 12-Antenna MIMO Array for Future 5G Smartphone Applications. IEEE Access 2017, 6, 6160–6170. [Google Scholar] [CrossRef]
- Guo, J.; Cui, L.; Li, C.; Sun, B. Side-Edge Frame Printed Eight-Port Dual-Band Antenna Array for 5G Smartphone Applications. IEEE Trans. Antennas Propag. 2018, 66, 7412–7417. [Google Scholar] [CrossRef]
- Li, Y.; Sim, C.-Y.-D.; Luo, Y.; Yang, G. High-Isolation 3.5 GHz Eight-Antenna MIMO Array Using Balanced Open-Slot Antenna Element for 5G Smartphones. IEEE Trans. Antennas Propag. 2019, 67, 3820–3830. [Google Scholar] [CrossRef]
- Zhao, A.; Ren, Z. Size Reduction of Self-Isolated MIMO Antenna System for 5G Mobile Phone Applications. IEEE Antennas Wirel. Propag. Lett. 2018, 18, 152–156. [Google Scholar] [CrossRef]
- Khalid, M.; Naqvi, S.I.; Hussain, N.; Rahman, M.; Mirjavadi, S.S.; Khan, M.J.; Amin, Y. Fawad 4-Port MIMO Antenna with Defected Ground Structure for 5G Millimeter Wave Applications. Electronics 2020, 9, 71. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Hong, W. Co-existance issues concerning 4G and mm-wave 5G antennas for mobile terminals. In Proceedings of the 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, China, 16–19 October 2017; pp. 1–3. [Google Scholar]
- Ban, Y.-L.; Li, C.; Sim, C.-Y.-D.; Wu, G.; Wong, K.-L. 4G/5G Multiple Antennas for Future Multi-Mode Smartphone Applications. IEEE Access 2016, 4, 2981–2988. [Google Scholar] [CrossRef]
- Li, Y.; Sim, C.; Luo, Y.; Yang, G. 12-port 5G Massive MIMO antenna array in sub-6GHz mobile handset for LTE bands 42/43/46 applications. IEEE Access 2018, 6, 344–354. [Google Scholar] [CrossRef]
- Hussain, R.; Alreshaid, A.T.; Podilchak, S.K.; Sharawi, M.S. Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets. IET Microwaves, Antennas Propag. 2017, 11, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Parchin, N.O.; Shen, M.; Pedersen, G.F. UWB MM-Wave antenna array with quasi omnidirectional beams for 5G handheld devices. In Proceedings of the 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, China, 16–19 October 2016; pp. 1–4. [Google Scholar]
- Ikram, M.; Hussain, R.; Sharawi, M.S. 4G/5G antenna system with dual function planar connected array. IET Microwaves, Antennas Propag. 2017, 11, 1760–1764. [Google Scholar] [CrossRef]
- Magray, M.I.; Karthikeya, G.S.; Muzaffar, K.; Koul, S.K. Compact Co-design of Conformal 4G LTE and mmWave 5G Antennas for Mobile Terminals. IETE J. Res. 2019, 1–12. [Google Scholar] [CrossRef]
- Naqvi, S.I.; Naqvi, A.H.; Arshad, F.; Riaz, M.A.; Azam, M.A.; Khan, M.S.; Amin, Y.; Loo, J.; Tenhunen, H. An Integrated Antenna System for 4G and Millimeter-Wave 5G Future Handheld Devices. IEEE Access 2019, 7, 116555–116566. [Google Scholar] [CrossRef]
- Kurvinen, J.; Kahkonen, H.; Lehtovuori, A.; Ala-Laurinaho, J.; Viikari, V. Co-Designed mm-Wave and LTE Handset Antennas. IEEE Trans. Antennas Propag. 2018, 67, 1545–1553. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design, 3rd ed.; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Apple Inc. Release R8. Accessory Design Guidelines for Apple Devices. Available online: https://developer.apple.com/accessories/Accessory-Design-Guidelines.pdf (accessed on 12 November 2019).
- Liu, L.; Cheung, S.W.; Weng, Y.F.; Yuk, T.I. Cable Effects on Measuring Small Planar UWB Monopole Antennas. In Ultra Wideband—Current Status and Future Trends; InTech: London, UK, 2012. [Google Scholar]
- Liu, L.; Weng, Y.; Cheung, S.W.; Yuk, T.I.; Foged, L.J. Modeling of cable for measurements of small monopole antennas. In Proceedings of the 2009 Loughborough Antennas & Propagation Conference, Loughborough, UK, 14–15 November 2011; pp. 1–4. [Google Scholar]
- Zhao, K.; Ying, Z.; He, S. EMF Exposure Study Concerning mmWave Phased Array in Mobile Devices for 5G Communication. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 1132–1135. [Google Scholar] [CrossRef]
- Iqbal, A.; Basir, A.; Smida, A.; Mallat, N.K.; Elfergani, I.; Rodriguez, J.; Kim, S. Electromagnetic Bandgap Backed Millimeter-Wave MIMO Antenna for Wearable Applications. IEEE Access 2019, 7, 111135–111144. [Google Scholar] [CrossRef]
- Blanch, S.; Romeu, J.; Corbella, I. Exact representation of antenna system diversity performance from input parameter description. Electron. Lett. 2003, 39, 705. [Google Scholar] [CrossRef] [Green Version]
- Sharawi, M.S. Printed MIMO Antenna Engineering; Artech House: Norwood, MA, USA, 2014. [Google Scholar]
Name | Value (mm) | Name | Value (mm) | Name | Value (mm) |
---|---|---|---|---|---|
4G/LTE Antenna parameters | |||||
Ls | 25 | Ws | 21 | Lp | 11.8 |
Lf | 8.76 | Wf | 2.2 | Wp | 19 |
Lp1 | 3.3 | Wp1 | 3.4 | Lp2 | 2.5 |
Wp2 | 3.4 | R1 | 6 | ||
5G Single-element and Antenna Array Parameters | |||||
Ls | 6 | Ws | 6.2 | Lp | 4.2 |
Lf | 1.7 | Wf | 1.5 | Wp | 3.6 |
Sl | 1.35 | Sw | 2 | Lf2 | 1.28 |
Lf1 | 4.4 | Wf1 | 1.6 | Wf2 | 0.4 |
Lg1 | 12.5 | Wg1 | 1.35 | R2 | 1.3 |
4G/LTE and 5G Integrated Design | |||||
L | 110 | W | 75 |
Frequency (GHz) | Ant # | Peak Gain (dB) | Radiation Efficiency (%) | ||
---|---|---|---|---|---|
Simulated | Measured | Simulated | Measured | ||
5.9 | Ant1 | 3.7 | 5.13 | 73 | 71 |
Ant2 | 3.8 | 4.86 | 79 | 83 | |
27.5 | Ant3 | 10.14 | 9.43 | 79 | 71 |
Ant6 | 9.37 | 9.49 | 69 | 72 | |
28 | Ant3 | 9.89 | 9.53 | 76 | 73 |
Ant6 | 9.7 | 9.31 | 73 | 68 |
Safety Standards | Transition Freq. (GHz) | Power Density Limit (W/m2) | Localized SAR Limit below Rransition Frequency (W/kg) |
---|---|---|---|
FCC | 6 | 10 | 1.6 (Averaged over 1 g) |
IEEE | 10 | 10 | 2 (Averaged over 10 g) |
ICNIRP | 3 | 10 |
Frequency (GHz) | MEG (−dB) of Ant No. | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
5.8 | 8.64 | 6.02 | - | - | - | - |
5.9 | 6.86 | 6.03 | - | - | - | - |
27 | - | - | 6.19 | 6.44 | 6.21 | 7.22 |
27.5 | - | - | 6.14 | 6.31 | 6.12 | 6.05 |
28 | - | - | 6.19 | 6.18 | 6.06 | 6.04 |
28.5 | - | - | 6.37 | 6.13 | 6.12 | 6.10 |
29 | - | - | 6.92 | 6.38 | 6.35 | 6.30 |
Figure of Merit | [33] | [34] | [35] | [37] | [38] | [39] | [40] | Proposed |
---|---|---|---|---|---|---|---|---|
Support 5G (mmWave) band | No | No | Yes | No | Yes | Yes | Yes | Yes |
Human safety (SAR/PD) analysis | No | Yes | No | No | No | No | No | Yes |
4G/LTE Antenna | ||||||||
ECC | <0.4 | <0.15 | 0.0058 | 0.06 | <0.04 | No | No | ≤0.05 |
Rad. Efficiency (%) | 40–60 | 41–82 | 75 | 74 | 75−90 | 71, 79 | 60 | 71 |
Gain (dBi) | 3.7 | Not provided | 3.86 | 3.7 | 2.15 | 3.27, 5.41 | Not Provided | 5.13 |
MIMO functionality | Yes | Yes | Yes | Yes | Yes | No | No | Yes |
5G mm-Wave Antenna | ||||||||
ECC | <0.2 | <0.1 | No | No | 0.00001 | No | No | 0.005 |
Rad. efficiency | 62–78 | 47–79 | Not provided | 83 | Not provided | 63 | Not provided | 73 |
Gain (dBi) | 3.2 | Not provided | 8 | 8.5 | 9 | 10.29 | 7 | 9.53 |
MIMO functionality | Yes | Yes | No | No | Yes | No | No | Yes |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iffat Naqvi, S.; Hussain, N.; Iqbal, A.; Rahman, M.; Forsat, M.; Mirjavadi, S.S.; Amin, Y. Integrated LTE and Millimeter-Wave 5G MIMO Antenna System for 4G/5G Wireless Terminals. Sensors 2020, 20, 3926. https://doi.org/10.3390/s20143926
Iffat Naqvi S, Hussain N, Iqbal A, Rahman M, Forsat M, Mirjavadi SS, Amin Y. Integrated LTE and Millimeter-Wave 5G MIMO Antenna System for 4G/5G Wireless Terminals. Sensors. 2020; 20(14):3926. https://doi.org/10.3390/s20143926
Chicago/Turabian StyleIffat Naqvi, Syeda, Niamat Hussain, Amjad Iqbal, MuhibUr Rahman, Masoud Forsat, Seyed Sajad Mirjavadi, and Yasar Amin. 2020. "Integrated LTE and Millimeter-Wave 5G MIMO Antenna System for 4G/5G Wireless Terminals" Sensors 20, no. 14: 3926. https://doi.org/10.3390/s20143926