Graphene-Based Biosensor for Early Detection of Iron Deficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. GFET Fabrication
2.3. GFET Functionalization
2.4. GFET Characterization
3. Results and Discussion
3.1. Ferritin Detection
3.2. Ferritin Binding Kinetics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prado, E.L.; Dewey, K.G. Nutrition and brain development in early life. Nutr. Rev. 2014, 72, 267–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UNICEF. Nutrition in the First 1000 Days; UNICEF: New York, NY, USA, 2012. [Google Scholar]
- Oshin, O.; Hampel, D.; Idachaba, F.; Atayero, A. The First 1000 Days: Trends towards Biosensing in Assessing Micronutrient Deficiencies. J. Phys. Conf. Ser. 2019, 1299, 012136. [Google Scholar] [CrossRef]
- Prado, E.L.; Sebayang, S.K.; Apriatni, M.; Adawiyah, S.R.; Hidayati, N.; Islamiyah, A.; Siddiq, S.; Harefa, B.; Lum, J.; Alcock, K.J.; et al. Maternal multiple micronutrient supplementation and other biomedical and socioenvironmental influences on children’s cognition at age 9–12 years in Indonesia: Follow-up of the SUMMIT randomised trial. Lancet Glob. Health 2017, 5, e217–e228. [Google Scholar] [CrossRef] [Green Version]
- Baker, R.; Caballero, B.H.; Dennison, B.A.; Innis, S.M.; Simmons, R.; Bonny, S. Toddler Nutrition. Mead Johnson Nutritionals. 2007. Available online: https://www.meadjohnson.com/pediatrics/us-en/sites/hcp-usa/files/LB2264.pdf (accessed on 11 March 2020).
- Shergill-Bonner, R. Micronutrients. Paediatr. Child Health 2013, 23, 331–336. [Google Scholar] [CrossRef]
- Bailey, R.L.; West, K.P., Jr.; Black, R.E. The Epidemiology of Global Micronutrient Deficiencies. Ann. Nutr. Metab. 2015, 66, 22–33. [Google Scholar] [CrossRef] [PubMed]
- WHO. Evaluating the public health significance of micronutrient malnutrition. In Guidelines on Food Fortification with Micronutrients; WHO: Geneva, Switzerland, 2010; pp. 41–92. [Google Scholar]
- Lopez, A.; Cacoub, P.; Macdougall, I.C.; Peyrin-Biroulet, L. Iron deficiency anaemia. Lancet 2015, 387, 907–916. [Google Scholar] [CrossRef]
- Lu, S.-Y. Perception of iron deficiency from oral mucosa alterations that show a high prevalence of Candida infection. J. Formos. Med. Assoc. 2016, 115, 619–627. [Google Scholar] [CrossRef] [Green Version]
- Lynch, S.; Pfeiffer, C.M.; Georgieff, M.K.; Brittenham, G.; Fairweather-Tait, S.; Hurrell, R.F.; McArdle, H.J.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)—Iron Review. J. Nutr. 2018, 148, 1001S–1067S. [Google Scholar] [CrossRef] [Green Version]
- Freerks, L.; Papadatou Soulou, E.; Batchelor, H.; Klein, S. A review of GI conditions critical to oral drug absorption in malnourished children. Eur. J. Pharm. Biopharm. 2019, 137, 9–22. [Google Scholar] [CrossRef]
- Kuku-Shittu, O.; Onabanjo, O.; Fadare, O.; Oyeyemi, M. Child Malnutrition in Nigeria: Evidence from Kwara State; International Food Policy Research Institute: Washington, DC, USA, 2016. [Google Scholar]
- Lozoff, B. Early Iron Deficiency Has Brain and Behavior Effects Consistent with Dopaminergic Dysfunction. J. Nutr. 2011, 141, 740S–746S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO; UNICEF; UNU. Iron Deficiency Anaemia: Assessment, Prevention and Control; WHO: Geneva, Switzerland, 2001. [Google Scholar]
- Höller, U.; Bakker, S.J.L.; Düsterloh, A.; Frei, B.; Köhrle, J.; Konz, T.; Lietz, G.; McCann, A.; Michels, A.J.; Molloy, A.M.; et al. Micronutrient status assessment in humans: Current methods of analysis and future trends. TrAC Trends Anal. Chem. 2018, 102, 110–122. [Google Scholar] [CrossRef] [Green Version]
- Kanneppady, S.K.; Bhaskar, A.; Kanneppady, S.S.; Rao, P.K.; Ramasamy, S.; Lakshman, A.R.; Shetty, S.R.; Devi, U.H.; Oo, A.M.; Lwin, O.M. Analysis of Salivary Micronutrients in Oral Potentially Malignant Disorder. J. Nutr. Health Food Sci. 2018, 6, 1–4. [Google Scholar] [CrossRef]
- Guo, L.-N.; Yang, Y.-Z.; Feng, Y.-Z. Serum and salivary ferritin and Hepcidin levels in patients with chronic periodontitis and type 2 diabetes mellitus. BMC Oral Health 2018, 18, 63. [Google Scholar] [CrossRef]
- Aghazadeh, M.; Eslami, H.; Pirzadeh, A.; Aghazadeh, Z.; Dousti, H.; Falsafi, P. Evaluation of Correlation Between Saliva And Serum Ferreting Level In Patients With Iron Deficiency Anemia And Comparison Group. IOSR J. Humanit. Soc. Sci. (IOSR-JHSS) 2016, 21, 54–59. [Google Scholar]
- Khan, A. Detection and quantitation of forty eight cytokines, chemokines, growth factors and nine acute phase proteins in healthy human plasma, saliva and urine. J. Proteom. 2012, 75, 4802–4819. [Google Scholar] [CrossRef]
- Jagannathan, N.; Thiruvengadam, C.; Ramani, P.; Premkumar, P.; Natesan, A.; Sherlin, H.J. Salivary ferritin as a predictive marker of iron deficiency anemia in children. J. Clin. Pediatr. Dent. 2012, 37, 25–30. [Google Scholar] [CrossRef]
- Canatan, D.; Akdeniz, S.K. Iron and ferritin levels in saliva of patients with Thalassemia and iron deficiency anemia. Mediterr. J. Hematol. Infect. Dis. 2012, 4, e2012051. [Google Scholar] [CrossRef]
- Agarwal, P.K.; Agarwal, K.N.; Agarwal, D.K. Biochemical changes in saliva of malnourished children. Am. J. Clin. Nutr. 1984, 39, 181–184. [Google Scholar] [CrossRef]
- Kartalov, E.P.; Lin, D.H.; Lee, D.T.; Anderson, W.F.; Taylor, C.R.; Scherer, A. Internally calibrated quantification of protein analytes in human serum by fluorescence immunoassays in disposable elastomeric microfluidic devices. Electrophoresis 2008, 29, 5010–5016. [Google Scholar] [CrossRef]
- Lu, Z.; O’Dell, D.; Srinivasan, B.; Rey, E.; Wang, R.; Vemulapati, S.; Mehta, S.; Erickson, D. Rapid diagnostic testing platform for iron and vitamin A. deficiency. Proc. Natl. Acad. Sci. USA 2017, 114, 13513–13518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, R.D.; Cunningham, B.T.; Andrade, J.E. A photonic crystal biosensor assay for ferritin utilizing iron-oxide nanoparticles. Biosens. Bioelectron. 2014, 56, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, B.; O’Dell, D.; Finkelstein, J.L.; Lee, S.; Erickson, D.; Mehta, S. ironPhone: Mobile device-coupled point-of-care diagnostics for assessment of iron status by quantification of serum ferritin. Biosens. Bioelectron. 2018, 99, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Aranyosi, A.J.; Wong, M.D.; Hong, J.H.; Lowe, J.; Chan, C.; Garlock, D.; Shaw, S.; Beattie, P.D.; Kratochvil, Z.F.; et al. lexible opto-electronics enabled microfluidics systems with cloud connectivity for point-of-care micronutrient analysis. Biosens. Bioelectron. 2016, 78, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Yen, L.-C.; Pan, T.-M.; Lee, C.-H.; Chao, T.-S. Label-free and real-time detection of ferritin using a horn-like polycrystalline-silicon nanowire field-effect transistor biosensor. Sens. Actuators B Chem. 2016, 230, 398–404. [Google Scholar] [CrossRef]
- Namdari, P.; Daraee, H.; Eatemadi, A. Recent Advances in Silicon Nanowire Biosensors: Synthesis Methods, Properties, and Applications. Nanoscale Res. Lett. 2016, 11, 406. [Google Scholar] [CrossRef] [Green Version]
- Nair, P.R.; Alam, M.A. Design Considerations of Silicon Nanowire Biosensors. IEEE Trans. Electron. Devices 2007, 54, 3400–3408. [Google Scholar] [CrossRef]
- Ambhorkar, P.; Wang, Z.; Ko, H.; Lee, S.; Koo, K.I.; Kim, K.; Cho, D.D. Nanowire-Based Biosensors: From Growth to Applications. Micromachines 2018, 9, 679. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, N.; Maekawa, T.; Kumar, D.N.S. Graphene based biosensors—Accelerating medical diagnostics to new-dimensions. J. Mater. Res. 2017, 32, 2860–2882. [Google Scholar] [CrossRef] [Green Version]
- Peña-Bahamonde, J.; Nguyen, H.N.; Fanourakis, S.K.; Rodrigues, D.F. Recent advances in graphene-based biosensor technology with applications in life sciences. J. Nanobiotechnol. 2018, 16, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oshin, O.; Kireev, D.; Akinwande, D.; Adetiba, E.; Idachaba, F.; Atayero, A. Advancing PoC Devices for Early Disease Detection using Graphene-based Sensors. J. Phys. Conf. Ser. 2019, 1378, 032031. [Google Scholar] [CrossRef]
- Yang, S.; Chen, Y.C.; Nicolini, L.; Pasupathy, P.; Sacks, J.; Su, B.; Yang, R.; Sanchez, D.; Chang, Y.F.; Wang, P.; et al. ‘Cut-and-Paste’ Manufacture of Multiparametric Epidermal Sensor Systems. Adv. Mater. 2015, 27, 6423–6430. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner1, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Jing, Q.; Ao, S.; Schneider, G.F.; Kireev, D.; Zhang, Z.; Fu, W. Ultrasensitive Field-Effect Biosensors Enabled by the Unique Electronic Properties of Graphene. In Small; Wiley-VCH Verlag: Weinheim, Germany, 2019; p. 1902820. [Google Scholar]
- Fu, W.; Feng, L.; Panaitov, G.; Kireev, D.; Mayer, D.; Offenhäusser, A.; Krause, H. Biosensing near the neutrality point of graphene. Sci. Adv. 2017, 3, e1701247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, W.; Jiang, L.; van Geest, E.P.; Lima, L.M.C.; Schneider, G.F. Sensing at the Surface of Graphene Field-Effect Transistors. Adv. Mater. 2017, 29. [Google Scholar] [CrossRef] [Green Version]
- Ikai, A. The World of Nano-Biomechanics: Mechanical Imaging and Measurement by Atomic Force Microscopy; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Hideshima, S.; Sato, R.; Kuroiwa, S.; Osaka, T. Fabrication of stable antibody-modified field effect transistors using electrical activation of Schiff base cross-linkages for tumor marker detection. Biosens. Bioelectron. 2011, 26, 2419–2425. [Google Scholar] [CrossRef]
- Kazuhiko, M.; Yasuhide, O.; Kenzo, M. Utilizing research into electrical double layers as a basis for the development of label-free biosensors based on nanomaterial transistors. Nanobiosens. Dis. Diagnosis 2015, 5, 1–13. [Google Scholar]
- Teixeira, S.; Burwell, G.; Castaing, A.; Gonzalez, D.; Conlan, R.S.; Guy, O.J. Epitaxial graphene immunosensor for human chorionic gonadotropin. Sens. Actuators B Chem. 2014, 190, 723–729. [Google Scholar] [CrossRef] [Green Version]
- Mao, S.; Lu, G.; Yu, K.; Bo, Z.; Chen, J. Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv. Mater. 2010, 22, 3521–3526. [Google Scholar] [CrossRef]
- He, D.; Marles-Wright, J. Ferritin family proteins and their use in bionanotechnology. New Biotechnol. 2015, 32, 651–657. [Google Scholar] [CrossRef] [Green Version]
- Uto, K.; Yamamoto, K.; Kishimoto, N.; Muraoka, M.; Aoyagi, T.; Yamashita, I. Electrostatic adsorption of ferritin, proteins and nanoparticle conjugate onto the surface of polyelectrolyte multilayers †. J. Mater. Chem. 2008, 18, 3876–3884. [Google Scholar] [CrossRef]
- Takahashi, T.; Kuyucak, S. Functional properties of threefold and fourfold channels in ferritin deduced from electrostatic calculations. Biophys. J. 2003, 84, 2256–2263. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Dong, X.; Liu, Y.; Li, L.J.; Chen, P. Graphene-based biosensors for detection of bacteria and their metabolic activities. J. Mater. Chem. 2011, 21, 12358–12362. [Google Scholar] [CrossRef]
- Ohno, Y.; Maehashi, K.; Matsumoto, K. Label-free biosensors based on aptamer-modified graphene field-effect transistors. J. Am. Chem. Soc. 2010, 132, 18012–18013. [Google Scholar] [CrossRef]
- Maehashi, K.; Katsura, T.; Kerman, K.; Takamura, Y.; Matsumoto, K.; Tamiya, E. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal. Chem. 2007, 79, 782–787. [Google Scholar] [CrossRef]
- Saltzgaber, G.; Wojcik, P.; Sharf, T.; Leyden, M.R.; Wardini, J.L.; Heist, C.A.; Adenuga, A.A.; Remcho, V.T.; Minot, E.D. Scalable graphene field-effect sensors for specific protein detection. Nanotechnology 2013, 24, 355502. [Google Scholar] [CrossRef] [Green Version]
- Schuster, P.; Érdi, P.; Tóth, J. Mathematical Models of Chemical Reactions. Theory and Applications of Deterministic and Stochastic models. A volume in the series: Nonlinear Science, Theory and Application. Manchester University Press, Manchester (U.K.) 1989. 259 Seiten. Berichte der Bunsengesellschaft für Phys. Chem. 1989, 93, 1501–1502. [Google Scholar] [CrossRef]
- Hammond, J.L.; Formisano, N.; Estrela, P.; Carrara, S.; Tkac, J. Electrochemical biosensors and nanobiosensors. Essays Biochem. 2016, 60, 69–80. [Google Scholar]
- Pollard, T.D. MBOC technical perspective: A guide to simple and informative binding assays. Mol. Biol. Cell 2010, 21, 4061–4067. [Google Scholar] [CrossRef] [Green Version]
- Swenson, H.; Stadie, N.P. Langmuir’s Theory of Adsorption: A Centennial Review. Langmuir 2019, 35, 5409–5426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Wang, C.; Zhu, Y.; Zhou, X.; Xiang, Y.; He, M.; Zeng, S. Fully integrated graphene electronic biosensor for label-free detection of lead (II) ion based on G-quadruplex structure-switching. Biosens. Bioelectron. 2017, 89 Pt 2, 758–763. [Google Scholar] [CrossRef]
Normal/Healthy (µg/L) | Iron-Deficient (µg/L) | Reference | ||
---|---|---|---|---|
Serum/ plasma | Saliva | Serum/ plasma | Saliva | |
196 | 6.5 | - | - | [18] |
225 | 948 | 169 | 1114 | [19] |
75 | 0.53 | - | - | [20] |
- | 939 ± 301 | - | 1532 ± 466 | [21] |
0.30 ± 0.17 | 0.43 ± 0.42 | 0.067 ± 0.035 | 0.186 ± 0.085 | [22] |
- | 169 ± 22 | - | Reduced concentration compared to normal saliva [16] | [23] |
Sample Type | Detection Mechanism | Performance | Reference | ||||
---|---|---|---|---|---|---|---|
DL | SE | SP | R | RT | |||
Serum | Fluorescence | 250 pM | --- | --- | --- | --- | [24] |
Fluorescence test strip | 15 ng/mL | 88% | 97% | --- | 15 min | [25] | |
Photonic crystal biosensors | 26 ng/mL | --- | --- | Up to 2000 ng/mL | --- | [26] | |
Whole blood | Lateral flow immunoassay (LFIA) | --- | 90% | 100% | --- | --- | [27] |
µPAD to derive plasma; quantification via light transmission changes by a photodetector | 5 ng/mL | 80% | 84% | Up to 50 ng/mL | 15 min | [28] | |
PBS | Horn-like silicon nanowire FET | 50 pg/mL | 133.47 mV/pH | --- | Up to 500 ng/mL | [29] | |
PBS | Graphene FET | 5.3 ng/L (10 fM) | --- | --- | Up to 500 ng/L | 1–10 s | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oshin, O.; Kireev, D.; Hlukhova, H.; Idachaba, F.; Akinwande, D.; Atayero, A. Graphene-Based Biosensor for Early Detection of Iron Deficiency. Sensors 2020, 20, 3688. https://doi.org/10.3390/s20133688
Oshin O, Kireev D, Hlukhova H, Idachaba F, Akinwande D, Atayero A. Graphene-Based Biosensor for Early Detection of Iron Deficiency. Sensors. 2020; 20(13):3688. https://doi.org/10.3390/s20133688
Chicago/Turabian StyleOshin, Oluwadamilola, Dmitry Kireev, Hanna Hlukhova, Francis Idachaba, Deji Akinwande, and Aderemi Atayero. 2020. "Graphene-Based Biosensor for Early Detection of Iron Deficiency" Sensors 20, no. 13: 3688. https://doi.org/10.3390/s20133688