Uncertainty Estimation of the Dose Rate in Real-Time Applications Using Gaussian Process Regression
Abstract
:1. Introduction
2. Materials and Methods
2.1. G(E) Function
2.2. GP Regression
2.3. Monte Carlo Modeling and Simulation
3. Results
3.1. G(E) Functions for Idealized Irradiation Geometires
3.2. G(E) Functions Using GP Regression
3.3. Dose Rate Uncertainty Estimation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- ICRP. International Commission on the ICRP; ICRP Publication 26; ICRP Pergamon: Oxford, UK, 1977; Available online: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_1_3 (accessed on 19 May 2020).
- ICRP. 1990 Recommendations of the International Commission on Radiological Protection; ICRP Publication 60; ICRP Pergamon: Oxford, UK, 1991; Available online: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_21_1-3 (accessed on 19 May 2020).
- ICRP. The 2007 Recommendations of the International Commission on Radiological Protection; ICRP Publication 103; 2007; Available online: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_37_2-4 (accessed on 19 May 2020).
- Zaider, M. ICRU, Determination of Dose Equivalents Resulting from External Radiation Sources. Radiat. Res. 1989, 120, 375. [Google Scholar] [CrossRef]
- ICRU. Determination of Dose Equivalents from External Radiation Sources—Part II, Report 43; 1988; Available online: https://icru.org/home/reports/determination-of-dose-equivalents-from-external-radiation-sources-part-ii-report-43 (accessed on 19 May 2020).
- IEC. Radiation Protection Instrumentation—Ambient and/or Directional Dose Equivalent (Rate) Meters and/or Monitors for Beta, X and Gamma Radiation—Part 1: Portable Workplace and Environmental Meters and Monitors; 2009; Available online: https://webstore.iec.ch/publication/3682 (accessed on 19 May 2020).
- Terada, H.; Sakai, E.; Katagiri, M. Spectrum-to-Exposure Rate Conversion Function of a Ge(Li) in-Situ Environmental Gamma-Ray Spectrometer. IEEE Trans. Nucl. Sci. 1977, 24, 647–651. [Google Scholar] [CrossRef]
- Huang, P. Measurement of air kerma rate and ambient dose equivalent rate using the G(E) function with hemispherical CdZnTe detector. Nucl. Sci. Tech. 2018, 29, 35. [Google Scholar] [CrossRef]
- Tsuda, S.; Saito, K. Spectrum–dose conversion operator of NaI(Tl) and CsI(Tl) scintillation detectors for air dose rate measurement in contaminated environments. J. Environ. Radioact. 2017, 166, 419–426. [Google Scholar] [CrossRef]
- Tsutsumi, M.; Tanimura, Y. LaCl3(Ce) scintillation detector applications for environmental gamma-ray measurements of low to high dose rates. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2006, 557, 554–560. [Google Scholar] [CrossRef]
- Park, K.; Kim, J.; Lim, K.T.; Kim, J.; Chang, H.; Kim, H.; Sharma, M.; Cho, G. Ambient dose equivalent measurement with a CsI(Tl) based electronic personal dosimeter. Nucl. Eng. Technol. 2019, 51, 1991–1997. [Google Scholar] [CrossRef]
- Ji, Y.-Y.; Chung, K.H.; Lee, W.; Park, D.-W.; Kang, M.J. Feasibility on the spectrometric determination of the individual dose rate for detected gamma nuclides using the dose rate spectroscopy. Radiat. Phys. Chem. 2014, 97, 172–177. [Google Scholar] [CrossRef]
- Casanovas, R.; Prieto, E.; Salvadó, M. Calculation of the ambient dose equivalent H*(10) from gamma-ray spectra obtained with scintillation detectors. Appl. Radiat. Isot. 2016, 118, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Buzhan, P.; Karakash, A.; Teverovskiy, Y. Silicon Photomultiplier and CsI(Tl) scintillator in application to portable H*(10) dosimeter. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 912, 245–247. [Google Scholar] [CrossRef]
- Camp, A.; Vargas, A. Ambient dose estimation H*(10) from LaBr3(Ce) spectra. Radiat. Prot. Dosim. 2013, 160, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Petoussi-Henss, N.; Bolch, W.; Eckerman, K.; Endo, A.; Hertel, N.; Hunt, J.; Pelliccioni, M.; Schlattl, H.; Zankl, M. Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures. Ann. ICRP 2010, 40, 1–257. [Google Scholar] [CrossRef]
- Saito, K.; Petoussi-Henss, N.; Zankl, M. Calculation of the Effective Dose and Its Variation from Environmental Gamma Ray Sources. Heal. Phys. 1998, 74, 698–706. [Google Scholar] [CrossRef] [PubMed]
- ICRU. Endo on behalf of ICRU Report Committee 26 on Operational Radiation Protection Quantities for External Radiation Operational quantities and new approach by ICRU. Ann. ICRP 2016, 45, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Schulz, E.; Speekenbrink, M.; Krause, A. A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions. J. Math. Psychol. 2018, 85, 1–16. [Google Scholar] [CrossRef]
- Ebden, M. Gaussian Processes: A Quick Introduction. arXiv, 2015; arXiv:1505.02965. Available online: https://arxiv.org/pdf/1505.02965.pdf(accessed on 19 May 2020).
- Goorley, J.T.; James, M.R.; Booth, T.E.; Brown, F.B.; Bull, J.S.; Cox, L.J.; Durkee, J.W.; Elson, J.S.; Fensin, M.L.; Forster, R.A.; et al. MCNP6 User’s Manual, Version 1.0; Los Alamos National Laboratory: Los Alamos, NM, USA, 2013.
- Shi, H.-X.; Chen, B.-X.; Li, T.-Z.; Yun, D. Precise Monte Carlo simulation of gamma-ray response functions for an NaI(Tl) detector. Appl. Radiat. Isot. 2002, 57, 517–524. [Google Scholar] [CrossRef]
- Jeon, B.; Kim, J.; Moon, M.; Cho, G. Parametric optimization for energy calibration and gamma response function of plastic scintillation detectors using a genetic algorithm. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 930, 8–14. [Google Scholar] [CrossRef]
- Ji, Y.-Y.; Chang, H.-S.; Lim, T.; Lee, W. Application of a SrI2(Eu) scintillation detector to in situ gamma-ray spectrometry in the environment. Radiat. Meas. 2019, 122, 67–72. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Lim, K.T.; Park, K.; Kim, Y.; Cho, G. Uncertainty Estimation of the Dose Rate in Real-Time Applications Using Gaussian Process Regression. Sensors 2020, 20, 2884. https://doi.org/10.3390/s20102884
Kim J, Lim KT, Park K, Kim Y, Cho G. Uncertainty Estimation of the Dose Rate in Real-Time Applications Using Gaussian Process Regression. Sensors. 2020; 20(10):2884. https://doi.org/10.3390/s20102884
Chicago/Turabian StyleKim, Jinhwan, Kyung Taek Lim, Kyeongjin Park, Yewon Kim, and Gyuseong Cho. 2020. "Uncertainty Estimation of the Dose Rate in Real-Time Applications Using Gaussian Process Regression" Sensors 20, no. 10: 2884. https://doi.org/10.3390/s20102884
APA StyleKim, J., Lim, K. T., Park, K., Kim, Y., & Cho, G. (2020). Uncertainty Estimation of the Dose Rate in Real-Time Applications Using Gaussian Process Regression. Sensors, 20(10), 2884. https://doi.org/10.3390/s20102884