Graphene Electro-Optical Switch Modulator by Adjusting Propagation Length Based on Hybrid Plasmonic Waveguide in Infrared Band
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Fabrication Error Tolerance and Manufacturing Process
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.; Geim, A.K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Yu, S.H.; Jeon, J.; Kim, H.; Lee, J.-Y.; Kim, H.; Ahn, J.-H.; Hwang, E.; Cho, J.H. Hybrid Structures of Organic Dye and Graphene for Ultrahigh Gain Photodetectors. Carbon 2015, 88, 165–172. [Google Scholar] [CrossRef]
- Gan, X.; Shiue, R.-J.; Gao, Y.; Meric, I.; Heinz, T.F.; Shepard, K.; Hone, J.; Assefa, S.; Englund, D. Chip-Integrated Ultrafast Graphene Photodetector with High Responsivity. Nat. Photon. 2013, 7, 883–887. [Google Scholar] [CrossRef]
- Li, J.; Tao, J.; Chen, Z.H.; Huang, X.-G. All-optical Controlling Based on Nonlinear Graphene Plasmonic Waveguides. Opt. Express 2016, 24, 22169–22176. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Anugrah, Y.; Koester, S.J.; Li, M. Optical absorption in graphene integrated on silicon waveguides. Appl. Phys. Lett. 2012, 101, 111110. [Google Scholar] [CrossRef]
- Sorianello, V.; Midrio, M.; Contestabile, G.; Asselberghs, I.; Van Campenhout, J.; Huyghebaert, C.; Goykhman, I.; Ott, A.K.; Ferrari, A.C.; Romagnoli, M. Graphene–Silicon Phase Modulators with Gigahertz Bandwidth. Nat. Photon. 2017, 12, 40. [Google Scholar] [CrossRef]
- Chen, J.-H.; Zheng, B.-C.; Shao, G.-H.; Ge, S.-J.; Xu, F.; Lu, Y.-Q. An All-Optical Modulator Based on a Stereo Graphene–Microfiber Structure. Light. Sci. Appl. 2015, 4, e360. [Google Scholar] [CrossRef]
- Cao, H.; Zhou, X.; Qin, Z.; Liu, Z. Low-Temperature Preparation of Nitrogen-Doped Graphene for Supercapacitors. Carbon 2013, 56, 218–223. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Stoller, M.D.; Ganesh, K.J.; Cai, W.; Ferreira, P.J.; Pirkle, A.; Wallace, R.M.; Cychosz, K.A.; Thommes, M. Carbon-Based Supercapacitors Produced by Activation of Graphene. Science 2011, 332, 1537–1541. [Google Scholar] [CrossRef]
- Wan, S.; Bi, H.; Zhou, Y.; Xie, X.; Su, S.; Yin, K.; Sun, L. Graphene Oxide as High-Performance Dielectric Materials for Capacitive Pressure Sensors. Carbon 2017, 114, 209–216. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, Z.; Si, S.; Wu, W.; Deng, H.; Wang, F.; Xiao, X.; Jiang, C. Mercuric Contamination: Ultrasensitive SERS Substrate Integrated with Uniform Subnanometer Scale “Hot Spots” Created by a Graphene Spacer for the Detection of Mercury Ions (Small 9/2017). Small 2017, 13, 1603347. [Google Scholar] [CrossRef]
- Simsek, E. A Closed-Form Approximate Expression for the Optical Conductivity of Graphene. Opt. Lett. 2013, 38, 1437–1439. [Google Scholar] [CrossRef] [PubMed]
- Gusynin, V.P.; Sharapov, S.; Carbotte, J.P. Magneto-Optical Conductivity in Graphene. J. Phys. Condens. Matter 2006, 19, 026222. [Google Scholar] [CrossRef]
- Zhang, J.; Ouyang, H.; Zheng, X.; You, J.; Chen, R.; Zhou, T.; Sui, Y.; Liu, Y.; Cheng, X.A.; Jiang, T. Ultrafast Saturable Absorption of MoS_2 Nanosheets under Different Pulse-Width Excitation Conditions. Opt. Lett. 2018, 43, 243–246. [Google Scholar] [CrossRef]
- Dalir, H.; Xia, Y.; Wang, Y.; Zhang, X. Athermal Broadband Graphene Optical Modulator with 35 GHz Speed. ACS Photon. 2016, 3, 1564–1568. [Google Scholar] [CrossRef]
- Youngblood, N.; Anugrah, Y.; Ma, R.; Koester, S.J.; Li, M. Multifunctional Graphene Optical Modulator and Photodetector Integrated on Silicon Waveguides. Nano Lett. 2014, 14, 2741–2746. [Google Scholar] [CrossRef]
- Lin, H.; Song, Y.; Huang, Y.; Kita, D.; Deckoff-Jones, S.; Wang, K.; Li, L.; Li, J.; Zheng, H.; Luo, Z. Chalcogenide Glass-on-Graphene Photonics. Nat. Photon. 2017, 11, 798. [Google Scholar] [CrossRef]
- Yan, J.; Ma, C.; Huang, Y.; Yang, G.; Huang, Y. Single Silicon Nanostripe Gated Suspended Monolayer and Bilayer WS2 to Realize Abnormal Electro-Optical Modulation. Mater. Horizons 2019, 6, 334–342. [Google Scholar] [CrossRef]
- Phare, C.; Lee, Y.-H.D.; Cardenas, J.; Lipson, M. Graphene Electro-Optic Modulator with 30 GHz Bandwidth. Nat. Photon. 2015, 9, 511. [Google Scholar] [CrossRef]
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A Graphene-Based Broadband Optical Modulator. Nature 2011, 474, 64–67. [Google Scholar] [CrossRef]
- Nielsen, M.P.P.; LaFone, L.; Rakovich, Y.P.; Sidiropoulos, T.; Rahmani, M.; Maier, S.A.; Oulton, R.F. Adiabatic Nanofocusing in Hybrid Gap Plasmon Waveguides on the Silicon-on-Insulator Platform. Nano Lett. 2016, 16, 1410–1414. [Google Scholar] [CrossRef] [PubMed]
- Dabos, G.; Manolis, A.; Papaioannou, S.; Tsiokos, D.; Markey, L.; Weeber, J.-C.; Dereux, A.; Giesecke, A.L.; Porschatis, C.; Chmielak, B. CMOS Plasmonics in WDM Data Transmission: 200 Gb/s (8 × 25Gb/s) Transmission over Aluminum Plasmonic Waveguides. Opt. Express 2018, 26, 12469–12478. [Google Scholar] [CrossRef] [PubMed]
- Veronis, G.; Fan, S. Bends and Splitters in Metal-Dielectric-Metal Subwavelength Plasmonic Waveguides. Appl. Phys. Lett. 2005, 87, 131102. [Google Scholar] [CrossRef]
- Butt, M.A.; Хoнина, C.H.; Kazanskiy, N.L. Plasmonic Refractive Index Sensor Based on Metal-Insulator-Metal Waveguides with High Sensitivity. J. Mod. Opt. 2019, 66, 1038–1043. [Google Scholar] [CrossRef]
- Oulton, R.F.; Sorger, V.J.; Genov, D.A.; Pile, D.; Zhang, X. A Hybrid Plasmonic Waveguide for Subwavelength Confinement and Long-Range Propagation. Nat. Photon. 2008, 2, 496–500. [Google Scholar] [CrossRef]
- Bian, Y.; Ren, Q.; Kang, L.; Yue, T.; Werner, P.L.; Werner, D.H. Deep-Subwavelength Light Transmission in Hybrid Nanowire-Loaded Silicon Nano-Rib Waveguides. Photon. Res. 2017, 6, 37–45. [Google Scholar] [CrossRef]
- Dong, L.; Liu, H.; Wang, S.; Qu, S.; Wu, L. Hybrid Tube-Triangle Plasmonic Waveguide for Ultra-Deep Subwavelength Confinement. J. Light. Technol. 2017, 35, 2259–2265. [Google Scholar] [CrossRef]
- Bian, Y.; Gong, Q. Deep-Subwavelength Light Confinement and Transport in Hybrid Dielectric-Loaded Metal Wedges. Laser Photon. Rev. 2014, 8, 549–561. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Hybrid Plasmonic Waveguide-Assisted Metal–Insulator–Metal Ring Resonator for Refractive Index Sensing. J. Mod. Opt. 2018, 65, 1135–1140. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Wang, S.; Cai, M.; Zhang, H.; Qiao, Y. Electrical Phase Control Based on Graphene Surface Plasmon Polaritons in Mid-infrared. Nanomaterials 2020, 10, 576. [Google Scholar] [CrossRef]
- Qu, S.; Ma, C.; Liu, H. Tunable Graphene-Based Hybrid Plasmonic Modulators for Subwavelength Confinement. Sci. Rep. 2017, 7, 5190. [Google Scholar] [CrossRef] [PubMed]
- Ansell, D.; Radko, I.P.; Han, Z.; Rodriguez, F.; Bozhevolnyi, S.I.; Grigorenko, A.N. Hybrid Graphene Plasmonic Waveguide Modulators. Nat. Commun. 2015, 6, 8846. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.R.; Bhardwaj, P.; Subramanian, S.; Jaiswal, M.; Dhawan, A. Design of Electro-Optic Modulators and Switches Based on Graphene and Phase Change Materials. Integr. Opt. Des. Devices Syst. Appl. V 2019, 11031, 110311F. [Google Scholar]
- Zheng, P.; Yang, H.; Fan, M.; Hu, G.; Zhang, R.; Yun, B.; Cui, Y. A Hybrid Plasmonic Modulator Based on Graphene on Channel Plasmonic Polariton Waveguide. Plasmonics 2018, 13, 2029–2035. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Xiang, Y.; Jiang, G.; Wang, L.; Bao, Q.; Zhang, H.; Liu, Y.; Wen, S.; Fan, D. A Broadband Optical Modulator Based on a Graphene Hybrid Plasmonic Waveguide. J. Light. Technol. 2016, 34, 4948–4953. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Wang, S.; Cai, M.; Ma, L. Optical Transport Properties of Graphene Surface Plasmon Polaritons in Mid-Infrared Band. Crystals 2019, 9, 354. [Google Scholar] [CrossRef]
- Cai, M.; Wang, S.; Gao, B.; Wang, Y.; Han, T.; Liu, H. A New Electro-Optical Switch Modulator Based on the Surface Plasmon Polaritons of Graphene in Mid-Infrared Band. Sensors 2018, 19, 89. [Google Scholar] [CrossRef]
- Ma, Y.; Farrell, G.; Semenova, Y.; Wu, Q. A Hybrid Wedge-To-Wedge Plasmonic Waveguide with Low Loss Propagation and Ultra-Deep-Nanoscale Mode Confinement. J. Light. Technol. 2015, 33, 3827–3835. [Google Scholar] [CrossRef]
- Qu, S.; Ma, C.; Wang, S.; Liu, H.; Dong, L. Modulation Speed Limits of a Graphene-Based Modulator. Opt. Quantum Electron. 2018, 50, 105. [Google Scholar] [CrossRef]
- Gric, T.; Cada, M. Analytic Solution to Field Distribution in One-Dimensional Inhomogeneous Media. Opt. Commun. 2014, 322, 183–187. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Cai, M.; Liu, H. A Long Propagation Distance Hybrid Triangular Prism Waveguide for Ultradeep Subwavelength Confinement. IEEE Sens. J. 2019, 19, 11159–11166. [Google Scholar] [CrossRef]
- Bian, Y.; Zheng, Z.; Liu, Y.; Liu, J.; Zhu, J.; Zhou, T. Hybrid Wedge Plasmon Polariton Waveguide with Good Fabrication-Error-Tolerance for Ultra-Deep-Subwavelength Mode Confinement. Opt. Express 2011, 19, 22417–22422. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, M.; Wang, S.; Liu, Z.; Wang, Y.; Han, T.; Liu, H. Graphene Electro-Optical Switch Modulator by Adjusting Propagation Length Based on Hybrid Plasmonic Waveguide in Infrared Band. Sensors 2020, 20, 2864. https://doi.org/10.3390/s20102864
Cai M, Wang S, Liu Z, Wang Y, Han T, Liu H. Graphene Electro-Optical Switch Modulator by Adjusting Propagation Length Based on Hybrid Plasmonic Waveguide in Infrared Band. Sensors. 2020; 20(10):2864. https://doi.org/10.3390/s20102864
Chicago/Turabian StyleCai, Ming, Shulong Wang, Zhihong Liu, Yindi Wang, Tao Han, and Hongxia Liu. 2020. "Graphene Electro-Optical Switch Modulator by Adjusting Propagation Length Based on Hybrid Plasmonic Waveguide in Infrared Band" Sensors 20, no. 10: 2864. https://doi.org/10.3390/s20102864
APA StyleCai, M., Wang, S., Liu, Z., Wang, Y., Han, T., & Liu, H. (2020). Graphene Electro-Optical Switch Modulator by Adjusting Propagation Length Based on Hybrid Plasmonic Waveguide in Infrared Band. Sensors, 20(10), 2864. https://doi.org/10.3390/s20102864