Preparation and NH3 Gas-Sensing Properties of Double-Shelled Hollow ZnTiO3 Microrods
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Fabrication of Gas Sensors Based on DSH ZnTiO3 Microrods and Measurement of Their Sensing Properties
2.3. Characterization of DSH ZnTiO3 Microrods
3. Results and Discussion
3.1. Characteristics of DSH ZnTiO3 Microrod Film
3.1.1. XRD Characterization of DSH ZnTiO3 Microrods
3.1.2. SEM and TEM Analyses of Morphology of DSH ZnTiO3 Microrod Film
3.2. NH3 Gas-Sensing Properties of DSH ZnTiO3 Microrod Film
3.3. Electrical Properties and NH3 Gas-Sensing Mechanism of DSH ZnTiO3 Microrod Film
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, L.; Zeng, W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuators A 2017, 267, 242–261. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Joshi, N.; Hayasaka, T.; Liu, Y.; Liu, H.; Oliveira, O.N., Jr.; Lin, L. A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim. Acta 2018, 185, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Li, R.; Chen, R.; Wang, J.; Xiang, L. 3D architectured graphene/metal oxide hybrids for gas sensors: A review. Sensors 2018, 18, 1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, B.; Sharma, A.; Kim, J.S. Recent advances on H2 sensor technologies based on MOX and FET devices: A review. Sens. Actuators B 2018, 262, 758–770. [Google Scholar] [CrossRef]
- Nazemi, H.; Joseph, A.; Park, J.; Emadi, A. Advanced micro- and nano-gas sensor technology: A review. Sensors 2019, 19, 1285. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.Y.; Lim, H.M.; Wei, B.Y.; Wu, C.Y.; Lin, C.K. UV enhancement of the gas sensing properties of nano-TiO2. Rev. Adv. Mater. Sci. 2003, 4, 48–54. [Google Scholar]
- Gong, J.; Li, Y.; Chai, X.; Hu, Z.; Deng, Y. UV-light-activated ZnO fibers for organic gas sensing at room temperature. J. Phys. Chem. C 2010, 114, 1293–1298. [Google Scholar] [CrossRef]
- Lu, G.; Xu, J.; Sun, J.; Yu, Y.; Zhang, Y.; Liu, F. UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sens. Actuators B 2012, 162, 82–88. [Google Scholar] [CrossRef]
- Fabbri, B.; Gaiardo, A.; Giberti, A.; Guidi, V.; Malagù, C.; Martucci, A.; Sturaro, M.; Zonta, G.; Gherardi, S.; Bernardoni, P. Chemoresistive properties of photo-activated thin and thick ZnO films. Sens. Actuators B 2016, 222, 1251–1256. [Google Scholar] [CrossRef]
- Siwińska-Stefańska, K.; Kubiak, A.; Piasecki, A.; Goscianska, J.; Nowaczyk, G.; Jurga, S.; Jesionowski, T. TiO2-ZnO binary oxide systems: Comprehensive characterization and tests of photocatalytic activity. Materials 2018, 11, 841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dulin, F.H.; Rase, D.E. Phase equilibria in the system ZnO-TiO2. J. Am. Ceram. Soc. 1960, 43, 125–131. [Google Scholar] [CrossRef]
- Bartram, S.F.; Slepetys, R.A. Compound formation and crystal structure in the system ZnO-TiO2. J. Am. Ceram. Soc. 1961, 44, 493–499. [Google Scholar] [CrossRef]
- Hosono, E.; Fujihara, S.; Onuki, M.; Kimura, T. Low-temperature synthesis of nanocrystalline zinc titanate materials with high specific surface area. J. Am. Ceram. Soc. 2004, 87, 1785–1788. [Google Scholar] [CrossRef]
- Mohammadi, M.R.; Fray, D.J. Low temperature nanostructured zinc titanate by an aqueous particulate sol-gel route: Optimization of heat treatment condition based on Zn:Ti molar ratio. J. Eur. Ceram. Soc. 2010, 30, 947–961. [Google Scholar] [CrossRef]
- Nicholas, T.N.; Michael, K.S.; Suresh, C.P. Crystallization and phase-transition characteristics of sol-gel-synthesized zinc titanates. Chem. Mater. 2011, 23, 1496–1504. [Google Scholar]
- Ray, S.; Das, P.; Banerjee, B.; Bhaumik, A.; Mukhopadhyay, C. Cubic perovskite ZnTiO3 nanopowder as a recyclable heterogeneous catalyst for the synthesis of 1,6-naphthyridines in water. ChemPlusChem 2015, 80, 731–739. [Google Scholar] [CrossRef]
- Chi, Y.; Yuan, Q.; Hou, S.; Zhao, Z. Synthesis and characterization of mesoporous ZnTiO3 rods via a polyvinylpyrrolidone assisted sol-gel method. Ceram. Int. 2016, 42, 5094–5099. [Google Scholar] [CrossRef]
- Pawar, R.C.; Kang, S.; Park, J.H.; Kim, J.H.; Ahn, S.; Lee, C.S. Evaluation of a multi-dimensional hybrid photocatalyst for enrichment of H2 evolution and elimination of dye/non-dye pollutants. Catal. Sci. Technol. 2017, 7, 2579–2590. [Google Scholar] [CrossRef]
- Wu, S.P.; Luo, J.H.; Cao, S.X. Microwave dielectric properties of B2O3-doped ZnTiO3 ceramics made with sol-gel technique. J. Alloys Compd. 2010, 502, 147–152. [Google Scholar] [CrossRef]
- Kong, J.Z.; Li, A.D.; Zhai, H.F.; Li, H.; Yan, Q.Y.; Ma, J.; Wu, D. Preparation, characterization and photocatalytic properties of ZnTiO3 powders. J. Hazard. Mater. 2009, 171, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zhao, C.L.; Zhou, Y.L.; Wu, Z.J.; Yuan, J.M.; Li, W.S. Synthesis and characterization of ZnTiO3 with high photocatalytic activity. Trans. Nonferrous Met. Soc. China 2015, 25, 2272–2278. [Google Scholar] [CrossRef]
- Perween, S.; Ranjan, A. Improved visible-light photocatalytic activity in ZnTiO3 nanopowder prepared by sol-electrospinning. Sol. Energy Mater. Sol. Cells 2017, 163, 148–156. [Google Scholar] [CrossRef]
- Kubiak, A.; Siwińska-Ciesielczyk, K.; Bielan, Z.; Zielińska-Jurek, A.; Jesionowski, T. Synthesis of highly crystalline photocatalysts based on TiO2 and ZnO for the degradation of organic impurities under visible-light irradiation. Adsorption 2019, 25, 309–325. [Google Scholar] [CrossRef] [Green Version]
- Yadav, B.C.; Yadav, A.; Singh, S.; Singh, K. Nanocrystalline zinc titanate synthesized via physicochemical route and its application as liquefied petroleum gas sensor. Sens. Actuators B 2013, 177, 605–611. [Google Scholar] [CrossRef]
- Abdul Haroon Rashid, S.S.A.; Sabri, Y.M.; Kandjani, A.E.; Harrison, C.J.; Balasubramanyam, R.K.C.; Gaspera, E.D.; Field, M.R.; Bhargava, S.K.; Tricoli, A.; Wlodarski, W.; et al. Zinc titanate nanoarrays with superior optoelectrochemical properties for chemical sensing. ACS Appl. Mater. Interfaces 2019, 11, 29255–29267. [Google Scholar] [CrossRef]
- Liu, S.; Tang, Z.R.; Sun, Y.; Colmenares, J.C.; Xu, Y.J. One-dimension-based spatially ordered architectures for solar energy conversion. Chem. Soc. Rev. 2015, 44, 5053–5075. [Google Scholar] [CrossRef]
- Wang, X.; Feng, J.; Bai, Y.; Zhang, Q.; Yin, Y. Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 2016, 116, 10983–11060. [Google Scholar] [CrossRef]
- Yu, Y.H.; Xia, M. Preparation and characterization of ZnTiO3 powders by sol-gel process. Mater. Lett. 2012, 77, 10–12. [Google Scholar] [CrossRef]
- Liu, X. Molten salt synthesis of ZnTiO3 powders with around 100 nm grain size crystalline morphology. Mater. Lett. 2012, 80, 69–71. [Google Scholar] [CrossRef]
- Bobowska, I.; Opasinńska, A.; Wypych, A.; Wojciechowski, P. Synthesis and dielectric investigations of ZnTiO3 obtained by a soft chemistry route. Mater. Chem. Phys. 2012, 134, 87–92. [Google Scholar] [CrossRef]
- Lim, J.; Cui, H.; Mu, D.; Liu, Y.; Guan, T.; Xia, Z.; Jiang, L.; Zuo, J.; Tan, C.; You, H. Synthesis and characterization of rGO decorated cubic ZnTiO3 rods for solar light-induced photodegradation of rhodamine B. New J. Chem. 2019, 43, 3374–3382. [Google Scholar]
- Su, P.G.; Chen, F.Y.; Wei, C.H. Simple one-pot polyol synthesis of Pd nanoparticles, TiO2 microrods and reduced graphene oxide ternary composite for sensing NH3 gas at room temperature. Sens. Actuators B 2018, 254, 1125–1132. [Google Scholar] [CrossRef]
- Pan, G.H.; Hayakawa, T.; Nogami, M.; Hao, Z.; Zhang, X.; Qu, X.; Zhang, J. Zinc titanium glycolate acetate hydrate and its transformation to zinc titanate microrods: Synthesis, characterization and photocatalytic properties. RSC Adv. 2015, 5, 88590–88601. [Google Scholar] [CrossRef]
- Sharma, U.; Jeevanandam, P. Synthesis temperature dependent morphological evolution in zinc titanate heteronanostructures and their application in environmental remediation. ChemistrySelect 2016, 1, 6382–6395. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Y.; Herricks, T.; Xia, Y. Ethylene glycol-mediated synthesis of metal oxide nanowires. J. Mater. Chem. 2004, 14, 695–703. [Google Scholar] [CrossRef]
- You, L.; Wang, T.; Ge, J. When mesoporous silica meets the alkaline polyelectrolyte: A controllable synthesis of functional and hollow nanostructures with a porous shell. Chem. Eur. J. 2013, 19, 2142–2149. [Google Scholar] [CrossRef]
- Sun, H.; Wang, L.; Chu, D.; Ma, Z.; Wang, A. Facile fabrication of multishelled Cr2O3 hollow microspheres with enhanced gas sensitivity. Mater. Lett. 2015, 140, 158–161. [Google Scholar] [CrossRef]
- Reddy, K.H.; Martha, S.; Parida, K.M. Fabrication of novel p-BiOI/n-ZnTiO3 heterojunction for degradation of rhodamine 6G under visible light irradiation. Inorg. Chem. 2013, 52, 6390–6401. [Google Scholar] [CrossRef]
- Surendar, T.; Kumar, S.; Shanker, V. Influence of La-doping on phase transformation and photocatalytic properties of ZnTiO3 nanoparticles synthesized via modified sol-gel method. Phys. Chem. Chem. Phys. 2014, 16, 728–735. [Google Scholar] [CrossRef]
- Dhivya, P.; Prasad, A.K.; Sridharan, M. Nanostructured TiO2 films: Enhanced NH3 detection at room temperature. Ceram. Int. 2014, 40, 409–415. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Wang, X.; Wang, J.; Gaskov, A.M.; Akbar, S.A. Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sens. Actuators B 2016, 230, 330–336. [Google Scholar] [CrossRef]
- Ye, Z.; Tai, H.; Xie, T.; Su, Y.; Yuan, Z.; Liu, C.; Jiang, Y. A facile method to develop novel TiO2/rGO layered film sensor for detecting ammonia at room temperature. Mater. Lett. 2016, 165, 127–130. [Google Scholar] [CrossRef]
- Wang, J.; Yang, P.; Wei, X. High-performance, room-temperature, and no-humidity impact ammonia sensor based on heterogeneous nickel oxide and zinc oxide nanocrystals. ACS Appl. Mater. Interfaces 2015, 7, 3816–3824. [Google Scholar] [CrossRef]
- Mhlongo, G.H.; Motaung, D.E.; Swart, H.C. Pd2+ doped ZnO nanostructures: Structural, luminescence and gas sensing properties. Mater. Lett. 2015, 160, 200–205. [Google Scholar] [CrossRef]
- Su, P.G.; Yang, L.Y. NH3 gas sensor based on Pd/SnO2/RGO ternary composite operated at room-temperature. Sens. Actuators B 2016, 223, 202–208. [Google Scholar] [CrossRef]
- Hieu, N.V.; Quang, V.V.; Hoa, N.D.; Kim, D. Preparing large-scale WO3 nanowire like structure for high sensitivity NH3 gas sensor through a simple route. Curr. Appl. Phys. 2011, 11, 657–661. [Google Scholar] [CrossRef]
- Shahabuddin, M.D.; Sharma, A.; Kumar, J.; Tomar, M.; Umar, A.; Gupta, V. Metal clusters activated SnO2 thin film for low level detection of NH3 gas. Sens. Actuators B 2014, 194, 410–418. [Google Scholar] [CrossRef]
- Yu, S.; Kan, K.; Yang, Y.; Jiang, C.; Gao, J.; Jing, L.; Shen, P.; Li, L.; Shi, K. Enhanced NH3 gas sensing performance based on electrospun alkaline-earth metals composited SnO2 nanofibers. J. Alloys Compd. 2015, 618, 240–247. [Google Scholar]
Sensing Material | Operating Temperature (°C) | Detection Limit (ppm) | Response/Recovery Time (s) | References |
---|---|---|---|---|
TiO2 | 25 | 5 | 34/90 | [41] |
TiO2 microspheres/RGO | 25 | 5 | -/- | [42] |
TiO2/RGO | 25 | - | 55/- | [43] |
ZnO/NiO | 25 | 15 | 20/90 | [44] |
ZnO/Pd | 200 | 30 | 198/334 | [45] |
Pd NPs/TiO2 MRs/RGO | 25 | 2.4 | 420/3000 | [46] |
DSH ZnTiO3 microrods | 25 | 1 | 93/363 | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, P.-G.; Liu, X.-H. Preparation and NH3 Gas-Sensing Properties of Double-Shelled Hollow ZnTiO3 Microrods. Sensors 2020, 20, 46. https://doi.org/10.3390/s20010046
Su P-G, Liu X-H. Preparation and NH3 Gas-Sensing Properties of Double-Shelled Hollow ZnTiO3 Microrods. Sensors. 2020; 20(1):46. https://doi.org/10.3390/s20010046
Chicago/Turabian StyleSu, Pi-Guey, and Xiang-Hong Liu. 2020. "Preparation and NH3 Gas-Sensing Properties of Double-Shelled Hollow ZnTiO3 Microrods" Sensors 20, no. 1: 46. https://doi.org/10.3390/s20010046
APA StyleSu, P.-G., & Liu, X.-H. (2020). Preparation and NH3 Gas-Sensing Properties of Double-Shelled Hollow ZnTiO3 Microrods. Sensors, 20(1), 46. https://doi.org/10.3390/s20010046