Next Article in Journal
High Sensitivity Differential Giant Magnetoresistance (GMR) Based Sensor for Non-Contacting DC/AC Current Measurement
Next Article in Special Issue
A Self-Powered Wireless Water Quality Sensing Network Enabling Smart Monitoring of Biological and Chemical Stability in Supply Systems
Previous Article in Journal
Distributed Optical Fiber-Based Approach for Soil–Structure Interaction
Previous Article in Special Issue
E-Cabin: A Software Architecture for Passenger Comfort and Cruise Ship Management
Open AccessArticle

A Comparative Analysis of Machine/Deep Learning Models for Parking Space Availability Prediction

CNRS UMR5157, Telecom SudParis, Institut Polytechnique de Paris, 91000 Evry, France
*
Author to whom correspondence should be addressed.
Sensors 2020, 20(1), 322; https://doi.org/10.3390/s20010322
Received: 5 December 2019 / Revised: 26 December 2019 / Accepted: 1 January 2020 / Published: 6 January 2020
(This article belongs to the Special Issue Sensor Systems in Smart Environments)
Machine/Deep Learning (ML/DL) techniques have been applied to large data sets in order to extract relevant information and for making predictions. The performance and the outcomes of different ML/DL algorithms may vary depending upon the data sets being used, as well as on the suitability of algorithms to the data and the application domain under consideration. Hence, determining which ML/DL algorithm is most suitable for a specific application domain and its related data sets would be a key advantage. To respond to this need, a comparative analysis of well-known ML/DL techniques, including Multilayer Perceptron, K-Nearest Neighbors, Decision Tree, Random Forest, and Voting Classifier (or the Ensemble Learning Approach) for the prediction of parking space availability has been conducted. This comparison utilized Santander’s parking data set, initiated while working on the H2020 WISE-IoT project. The data set was used in order to evaluate the considered algorithms and to determine the one offering the best prediction. The results of this analysis show that, regardless of the data set size, the less complex algorithms like Decision Tree, Random Forest, and KNN outperform complex algorithms such as Multilayer Perceptron, in terms of higher prediction accuracy, while providing comparable information for the prediction of parking space availability. In addition, in this paper, we are providing Top-K parking space recommendations on the basis of distance between current position of vehicles and free parking spots. View Full-Text
Keywords: car parking; decision tree; deep learning; ensemble learning; IoT; K-nearest neighbors (KNN); machine learning; multilayer perceptron; parking sensors; random forest; sensors; smart city; voting classifier car parking; decision tree; deep learning; ensemble learning; IoT; K-nearest neighbors (KNN); machine learning; multilayer perceptron; parking sensors; random forest; sensors; smart city; voting classifier
Show Figures

Figure 1

MDPI and ACS Style

Awan, F.M.; Saleem, Y.; Minerva, R.; Crespi, N. A Comparative Analysis of Machine/Deep Learning Models for Parking Space Availability Prediction. Sensors 2020, 20, 322.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop