Nonlinear Maximization of the Sum-Frequency Component from Two Ultrasonic Signals in a Bubbly Liquid
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Sum-Frequency Generation by Nonlinear Frequency Mixing vs. Harmonic Generation
3.2. Sum-Frequency Generation by Nonlinear Frequency Mixing under Linear Resonance Assumption
3.3. Nonlinear Resonance of the Cavity
3.4. Sum-Frequency Generation by Nonlinear Frequency Mixing under Nonlinear Resonance Assumption
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Solodov, I.Y. Ultrasonics of non-linear contacts: Propagation, reflection and NDE applications. Ultrasonics 1998, 36, 383–390. [Google Scholar] [CrossRef]
- Fatemi, M.; Greenleaf, J.F. Ultrasound-Stimulated Vibro-Acoustic Spectrography. Science 1998, 280, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.; Sutin, A.; Guyer, R.; Talmant, M.; Laugier, P.; Johnson, P.A. Nonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone. J. Acoust. Soc. Am. 2005, 118, 3946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haupert, S.; Ohara, Y.; Carcreff, E.; Renaud, G. Fundamental wave amplitude difference imaging for detection and characterization of embedded cracks. Ultrasonics 2019, 96, 132–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shung, K.K. Diagnostic Ultrasound: Imaging and Blood Flow Measurements; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Fenster, A.; Downey, D.B.; Cardinal, H.N. Three-dimensional ultrasound imaging. Phys. Med. Biol 2001, 46, R67–R99. [Google Scholar] [CrossRef] [PubMed]
- Tranquart, F.; Grenier, N.; Eder, V.; Pourcelot, L. Clinical use of ultrasound tissue harmonic imaging. Ultrasound Med. Biol. 1999, 25, 889–894. [Google Scholar] [CrossRef]
- Desser, T.S.; Jeffrey, R.B. Tissue harmonic imaging tecniques: Physical principles and clinical aplications. Eur. Semin. Ultrasound CT MR 2001, 22, 1–10. [Google Scholar] [CrossRef]
- Rosen, E.L.; Soo, M.S. Tissue harmonic imaging sonography of breast lesions: Improved margin analysis, conspicuity, and image quality compared to conventional ultrasound. Clin. Imaging 2001, 25, 379–384. [Google Scholar] [CrossRef]
- Mitri, F.G.; Silva, G.T.; Greenleaf, J.F.; Fatemi, M. Simultaneous sum-frequency and vibroacoustography imaging for nondestructive evaluation and testing aplications. J. Appl. Phys. 2007, 102, 114911. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Ratilal, P.; Cho, B.; Makris, N.C. Active nonlinear acoustic sensing of an object with sum or difference frequency Fields. Remote Sens. 2017, 9, 954. [Google Scholar] [CrossRef] [Green Version]
- Westervelt, P.J. Parametric acoustic array. J. Acoust. Soc. Am. 1963, 354, 535–537. [Google Scholar] [CrossRef]
- Sinha, D.N.; Pantea, C. Broadband unidirectional ultrasound propagation using sonic crystal and nonlinear medium. Emerg. Mater. Res. 2013, 2, 117–126. [Google Scholar] [CrossRef]
- Zabolotskaya, E.A.; Soluyan, S.I. Emission of harmonic and combination-frequency waves by bubbles. Acoust. Phys. 1973, 18, 396–398. [Google Scholar]
- Hamilton, M.F.; Blackstock, D.T. Nonlinear Acoustics; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Naugolnykh, K.; Ostrovsky, L. Nonlinear Wave Processes in Acoustics; Cambridge University Press: New York, NY, USA, 1998. [Google Scholar]
- Grieser, F.; Choi, P.K.; Enomoto, N.; Harada, H.; Okitsu, K.; Yasui, K. Sonochemistry and the Acoustic Bubble; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Dijkmans, P.A.; Juffermans, L.J.; Musters, R.J.; van Wamel, A.; ten Cate, F.J.; van Gilst, W.; Visser, C.A.; de Jong, N.; Kamp, O. Microbubbles and ultrasound: From diagnosis to therapy. Eur. J. Echocardiogr. 2004, 5, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Druzhinin, O.A.; Ostrovsky, L.A.; Prosperetti, A. Low-frequency acoustic wave generation in a resonant bubble layer. J. Acoust. Soc. Am. 1996, 100, 3570–3580. [Google Scholar] [CrossRef]
- Vanhille, C.; Campos-Pozuelo, C.; Sinha, D.N. Nonlinear frequency mixing in a resonant cavity: Numerical simulations in a bubbly liquid. Ultrasonics 2014, 54, 2051–2054. [Google Scholar] [CrossRef] [PubMed]
- Tejedor Sastre, M.T.; Vanhille, C. A numerical model for the study of the difference frequency generated from nonlinear mixing of standing ultrasonic waves in bubbly liquids. Ultrasonics 2017, 34, 881–888. [Google Scholar] [CrossRef]
- Tejedor Sastre, M.T.; Vanhille, C. Numerical models for the study of the nonlinear frequency mixing in two and three-dimensional resonant cavities filled with a bubbly liquid. Ultrasonics 2017, 39, 597–610. [Google Scholar] [CrossRef]
- Tejedor Sastre, M.T.; Vanhille, C. Numerical study of frequency mixing in a focused ultrasonic field in bubbly liquids from a dual-frequency spherical source. Results Phys. 2018, 11, 726–733. [Google Scholar] [CrossRef]
- Omta, R. Oscillations of a cloud of bubbles of small and not so small amplitude. J. Acoust. Soc. Am. 1987, 82, 1018–1033. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Yoshizawa, S. Behaviour of a bubble cluster in an ultrasound field. Int. J. Numer. Methods Fluids 2005, 47, 591–601. [Google Scholar] [CrossRef]
- Doc, J.-B.; Conoir, J.-M.; Marchiano, R.; Fuster, D. Nonlinear acoustic propagation in bubbly liquids: Multiple scattering, softening and hardening phenomena. J. Acoust. Soc. Am. 2016, 139, 1703–1712. [Google Scholar] [CrossRef] [PubMed]
- Tejedor Sastre, M.T.; Vanhille, C. Nonlinear resonance of cavities filled with bubbly liquids: A numerical study with application to the enhancement of the frequency mixing effect. Shock Vib. 2018, 2018, 1570508. [Google Scholar] [CrossRef]
- Leen, E. Detection of liver lesions with contrast harmonic imaging and ‘burst’-mode. Semin. Ultrasound CT MR 2001, 22, 11–24. [Google Scholar] [CrossRef]
- Wilson, S.R.; Burns, P.N.; Muradali, D. Ultrasound contrast harmonic imaging of abdominal organs. Radiology 2000, 215, 1531–1561. [Google Scholar]
- Kögl, M.; Hurlebaus, S.; Gaul, L. Finite element simulation of non-destructive damage detection with higher harmonics. NDT E Int. 2004, 37, 195–205. [Google Scholar] [CrossRef]
- Shah, A.A.; Ribakov, Y. Non-linear ultrasonic evaluation of damaged concrete based on higher order harmonic generation. Mater. Des. 2009, 30, 4095–4102. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tejedor Sastre, M.T.; Vanhille, C. Nonlinear Maximization of the Sum-Frequency Component from Two Ultrasonic Signals in a Bubbly Liquid. Sensors 2020, 20, 113. https://doi.org/10.3390/s20010113
Tejedor Sastre MT, Vanhille C. Nonlinear Maximization of the Sum-Frequency Component from Two Ultrasonic Signals in a Bubbly Liquid. Sensors. 2020; 20(1):113. https://doi.org/10.3390/s20010113
Chicago/Turabian StyleTejedor Sastre, María Teresa, and Christian Vanhille. 2020. "Nonlinear Maximization of the Sum-Frequency Component from Two Ultrasonic Signals in a Bubbly Liquid" Sensors 20, no. 1: 113. https://doi.org/10.3390/s20010113
APA StyleTejedor Sastre, M. T., & Vanhille, C. (2020). Nonlinear Maximization of the Sum-Frequency Component from Two Ultrasonic Signals in a Bubbly Liquid. Sensors, 20(1), 113. https://doi.org/10.3390/s20010113