Detection of Gaps in Concrete–Metal Composite Structures Based on the Feature Extraction Method Using Piezoelectric Transducers
Abstract
:1. Introduction
2. Partial Least Squared Regression Technique
3. Materials and Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Feng, P.; Cheng, S.; Bai, Y.; Ye, L. Mechanical behavior of concrete-filled square steel tube with FRP-confined concrete core subjected to axial compression. Compos. Struct. 2015, 123, 312–324. [Google Scholar] [CrossRef]
- Tao, Z.; Song, T.-Y.; Uy, B.; Han, L.-H. Bond behavior in concrete-filled steel tubes. J. Constr. Steel Res. 2016, 120, 81–93. [Google Scholar] [CrossRef]
- Kang, W.; Uy, B.; Tao, Z.; Hicks, S. Design strength of concrete-filled steel columns. Adv. Steel Constr. 2015, 11, 165–184. [Google Scholar]
- Han, L.-H.; Xu, C.-Y.; Tao, Z. Performance of concrete filled stainless steel tubular (CFSST) columns and joints: Summary of recent research. J. Constr. Steel Res. 2019, 152, 117–131. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Shen, X.; Zhu, Y. Behavior of circular CFST columns subjected to different lateral impact energy. Appl. Sci. 2019, 9, 1134. [Google Scholar] [CrossRef]
- Lai, Z.; Varma, A.H. Noncompact and slender circular CFT members: Experimental database, analysis, and design. J. Constr. Steel Res. 2015, 106, 220–233. [Google Scholar] [CrossRef]
- Xue, J.-Q.; Briseghella, B.; Chen, B.-C. Effects of debonding on circular CFST stub columns. J. Constr. Steel Res. 2012, 69, 64–76. [Google Scholar] [CrossRef]
- Rossi, P.; Charron, J.P.; Bastien-Masse, M.; Tailhan, J.-L.; Le Maou, F.; Ramanich, S. Tensile basic creep versus compressive basic creep at early ages: Comparison between normal strength concrete and a very high strength fibre reinforced concrete. Mater. Struct. 2014, 47, 1773–1785. [Google Scholar] [CrossRef]
- Liao, F.-Y.; Han, L.-H.; He, S.-H. Behavior of CFST short column and beam with initial concrete imperfection: Experiments. J. Constr. Steel Res. 2011, 67, 1922–1935. [Google Scholar] [CrossRef]
- Capriotti, M.; Kim, H.E.; Scalea, F.L.D.; Kim, H. Non-destructive inspection of impact damage in composite aircraft panels by ultrasonic guided waves and statistical processing. Materials 2017, 10, 616. [Google Scholar] [CrossRef]
- Wan, X.; Zhang, Q.; Xu, G.; Tse, P. Numerical simulation of nonlinear lamb waves used in a thin plate for detecting buried micro-cracks. Sensors 2014, 14, 8528–8546. [Google Scholar] [CrossRef] [PubMed]
- Salmanpour, M.; Sharif Khodaei, Z.; Aliabadi, M. Airborne transducer integrity under operational environment for structural health monitoring. Sensors 2016, 16, 2110. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Gao, P. Lamb wave-minimum Sampling variance particle filter-based fatigue crack prognosis. Sensors 2019, 19, 1070. [Google Scholar] [CrossRef]
- Huo, L.; Chen, D.; Kong, Q.; Li, H.; Song, G. Smart washer—A piezoceramic-based transducer to monitor looseness of bolted connection. Smart Mater. Struct. 2017, 26, 025033. [Google Scholar] [CrossRef]
- Sevillano, E.; Sun, R.; Perera, R. Damage detection based on power dissipation measured with PZT sensors through the combination of electro-mechanical impedances and guided waves. Sensors 2016, 16, 639. [Google Scholar] [CrossRef] [PubMed]
- Pilarski, A.; Rose, J.L. Lamb wave mode selection concepts for interfacial weakness analysis. J. Nondestr. Eval. 1992, 11, 237–249. [Google Scholar] [CrossRef]
- Na, W.; Seo, D.-W.; Kim, B.-C.; Park, K.-T. Effects of applying different resonance amplitude on the performance of the impedance-based health monitoring technique subjected to damage. Sensors 2018, 18, 2267. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Liu, Y.; Liufu, Y.; Lin, P. Debonding detection in hidden frame supported glass curtain walls using the nonlinear ultrasonic modulation method with piezoceramic transducers. Sensors 2018, 18, 2094. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.; Hao, H.; Ou, J. Guided wave propagation and spectral element method for debonding damage assessment in RC structures. J. Sound Vib. 2009, 324, 751–772. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, H. Modelling of guided wave propagation with spectral element: Application in structural engineering. Appl. Mech. Mater. 2014, 553, 687–692. [Google Scholar] [CrossRef]
- Kong, Q.; Robert, R.H.; Silva, P.; Mo, Y. Cyclic crack monitoring of a reinforced concrete column under simulated pseudo-dynamic loading using piezoceramic-based smart aggregates. Appl. Sci. 2016, 6, 341. [Google Scholar] [CrossRef]
- Kong, Q.; Fan, S.; Bai, X.; Mo, Y.; Song, G. A novel embeddable spherical smart aggregate for structural health monitoring: Part I. Fabrication and electrical characterization. Smart Mater. Struct. 2017, 26, 095050. [Google Scholar] [CrossRef]
- Zeng, L.; Parvasi, S.M.; Kong, Q.; Huo, L.; Li, M.; Song, G. Bond slip detection of concrete-encased composite structure using shear wave based active sensing approach. Smart Mater. Struct. 2015, 24, 125026. [Google Scholar] [CrossRef]
- Yan, S.; Fu, J.; Sun, W.; Qi, B.; Liu, F. PZT-based detection of compactness of concrete in concrete filled steel tube using time reversal method. Math. Probl. Eng. 2014, 2014, 909682. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, T.; Song, G.; Gu, H. Active interface debonding detection of a concrete-filled steel tube with piezoelectric technologies using wavelet packet analysis. Mech. Syst. Signal Pr. 2013, 36, 7–17. [Google Scholar] [CrossRef]
- Xu, B.; Luan, L.; Chen, H.; Ge, H. Numerical study on interface debonding detection mechanisms with 2D spectral element method for concrete-filled steel tube using embedded PZT sensor. Smart Mater. Struct. 2018, 27, 125008. [Google Scholar] [CrossRef]
- Xu, B.; Li, B.; Song, G. Active debonding detection for large rectangular CFSTs based on wavelet packet energy spectrum with piezoceramics. J. Struct. Eng. 2012, 139, 1435–1443. [Google Scholar] [CrossRef]
- Xu, B.; Chen, H.; Mo, Y.-L.; Zhou, T. Dominance of debonding defect of CFST on PZT sensor response considering the meso-scale structure of concrete with multi-scale simulation. Mech. Syst. Signal Pr. 2018, 107, 515–528. [Google Scholar] [CrossRef]
- Chen, H.; Xu, B.; Zhou, T.; Mo, Y.-L. Debonding detection for rectangular CFST using surface wave measurement: Test and multi-physical fields numerical simulation. Mech. Syst. Signal Pr. 2019, 117, 238–254. [Google Scholar] [CrossRef]
- Xu, B.; Chen, H.; Mo, Y.-L.; Chen, X. Multi-physical field guided wave simulation for circular concrete-filled steel tubes coupled with piezoelectric patches considering debonding defects. Int. J. Solids Struct. 2017, 122, 25–32. [Google Scholar] [CrossRef]
- Yan, B.; Zou, Q.; Dong, Y.; Shao, X. Application of PZT technology and clustering algorithm for debonding detection of steel-UHPC composite slabs. Sensors 2018, 18, 2953. [Google Scholar] [CrossRef] [PubMed]
- Giri, P.; Kharkovsky, S.; Zhu, X.; Clark, S.M.; Taheri, S.; Samali, B. Characterization of carbon fiber reinforced polymer strengthened concrete and gap detection with a piezoelectric-based sensory technique. Struct. Health Monit. 2019, 18, 172–179. [Google Scholar] [CrossRef]
- Giri, P.; Kharkovsky, S.; Zhu, X.; Clark, S.M.; Samali, B. Debonding detection in a carbon fibre reinforced concrete structure using guided waves. Smart Mater. Struct. 2019, 28, 4. [Google Scholar] [CrossRef]
- Lee, B.; Manson, G.; Staszewski, W. Environmental effects on lamb wave responses from piezoceramic sensors. Mater. Sci. Forum 2003, 440–441, 195–202. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, X.; Tang, J.; Ding, Y. Damage detection using piezoelectric transducers and the lamb wave approach: II. Robust and quantitative decision making. Smart Mater. Struct. 2008, 17, 025034. [Google Scholar] [CrossRef]
- Eaton, M.; Pullin, R.; Hensman, J.; Holford, K.; Worden, K.; Evans, S. Principal component analysis of acoustic emission signals from landing gear components: An aid to fatigue fracture detection. Strain 2011, 47, e588–e594. [Google Scholar] [CrossRef]
- Pavlopoulou, S.; Worden, K.; Soutis, C. Structural health monitoring and damage prognosis in composite repaired structures through the excitation of guided ultrasonic waves. In Proceedings of the Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring (SPIE, 2013), San Diego, CA, USA, 17 April 2013; p. 869504. [Google Scholar]
- Cross, E.; Manson, G.; Worden, K.; Pierce, S. Features for damage detection with insensitivity to environmental and operational variations. Proc. R. Soc. A 2012, 468, 4098–4122. [Google Scholar] [CrossRef] [Green Version]
- Kessler, S.S.; Agrawal, P. Application of pattern recognition for damage classification in composite laminates. In Proceedings of the 6th International Workshop on Structural Health Monitoring, Stanford University, Stanford, CA, USA, September 2007. [Google Scholar]
- Mishra, S.; Vanli, O.A.; Park, C. A multivariate cumulative sum method for continuous damage monitoring with lamb-wave sensors. Int. J. Progn. Heal. Manag. 2015, 6, 1–11. [Google Scholar]
- Mishra, S.; Vanli, O.A. Remaining useful life estimation with lamb-wave sensors based on wiener process and principal components regression. J. Nondestr. Eval. 2016, 35, 11. [Google Scholar] [CrossRef]
- Giri, P.; Kharkovsky, S. Detection of gap in concrete-metal structures using piezoelectric sensor technique. In Proceedings of the 2017 IEEE International Instrumentation Measurement Technology Conference (I2MTC), Torino, Italy, 22–25 May 2017; pp. 1–5. [Google Scholar]
- Hill, T.; Lewicki, P.; Lewicki, P. Statistics: Methods and Applications: A Comprehensive Reference for Science, Industry, and Data Mining; StatSoft, Inc.: Tulsa, OK, USA, 2006. [Google Scholar]
- Stott, A.E.; Dees, B.S.; Kisil, I.; Mandic, D.P. A class of multidimensional NIPALS algorithms for quaternion and tensor partial least squares regression. Signal Process. 2019, 160, 316–327. [Google Scholar] [CrossRef]
- Wang, W.; Ma, H.; Li, Z.; Tang, Z. Size effect in circular concrete-filled steel tubes with different diameter-to-thickness ratios under axial compression. Eng. Struct. 2017, 151, 554–567. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giri, P.; Mishra, S.; Clark, S.M.; Samali, B. Detection of Gaps in Concrete–Metal Composite Structures Based on the Feature Extraction Method Using Piezoelectric Transducers. Sensors 2019, 19, 1769. https://doi.org/10.3390/s19081769
Giri P, Mishra S, Clark SM, Samali B. Detection of Gaps in Concrete–Metal Composite Structures Based on the Feature Extraction Method Using Piezoelectric Transducers. Sensors. 2019; 19(8):1769. https://doi.org/10.3390/s19081769
Chicago/Turabian StyleGiri, Paritosh, Spandan Mishra, Simon Martin Clark, and Bijan Samali. 2019. "Detection of Gaps in Concrete–Metal Composite Structures Based on the Feature Extraction Method Using Piezoelectric Transducers" Sensors 19, no. 8: 1769. https://doi.org/10.3390/s19081769
APA StyleGiri, P., Mishra, S., Clark, S. M., & Samali, B. (2019). Detection of Gaps in Concrete–Metal Composite Structures Based on the Feature Extraction Method Using Piezoelectric Transducers. Sensors, 19(8), 1769. https://doi.org/10.3390/s19081769