Simultaneous Transmission of Photonic Services over One Fiber with an ITU 100 GHz Grid
Abstract
:1. Introduction
- Technology based on amplitude modulation by RF signal—For this purpose, various methods have been developed. The characteristic feature of these methods is the radio-frequency (RF) modulation signal for encoding transmitted time labels. These methods assume a symmetrical transfer path in both directions, i.e., bidirectional transmission using a single fiber, and possibly suitable methods for compensating delay variations due to external influences, especially temperature. In terms of the required bandwidth, a single DWDM channel for each direction is sufficient. Standard transceivers or fiber lasers are used as the source of the optical signal.
- Transmission of unmodulated optical signal—The subject of transmission is the unmodulated carrier signal from a stabilized laser, which is controlled by the source of a stable optical signal (e.g., an optical clock). Therefore, such a method is used only for the frequency transmission and is not utilized for the time transmission. The standard uncompensated transmission path provides stability on the order of 1 to 1 . To increase the stability to the order of 1 , stabilizing the optical fiber noise is required, i.e., to eliminate low-frequency interference caused mainly by vibration and shaking of the optical fiber. This method has low optical channel width requirements, such that a 50 GHz DWDM channel is sufficient.
2. Related Works
3. Measurement Setup
3.1. -OTDR
3.2. Accurate Time Measurement Method
3.3. Coriant Groove
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AOM | Acousto-optic modulator |
ASE | Amplified spontaneous emission |
BER | Bit error rate |
CW | Continuous wave |
CWDM | Coarse wavelength division multiplex |
DP-8QAM | Dual-polarization 8 quadrature amplitude modulation |
DP-QPSK | Dual-polarization quadrature phase shift keying |
DWDM | Dense wavelength division multiplex |
EDFA | Erbium-doped fiber amplifier |
FBG | Fiber Bragg grating |
GMT | Greenwich mean time |
GNSS | Global Navigation System Satellite |
HD | High definition |
IEEE | Institute of Electrical and Electronics Engineers |
IPTV | Internet protocol television |
UHD | Ultrahigh definition |
ITU | International Telecommunication Union |
NREN | National Research and Education Network |
NTP | Network time protocol |
OLS | Open-line system |
-OTDR | Phase-sensitive optical time domain reflectometer |
pre-FEC-BER | Pre-forward error correction-bit error rate |
PTP | Precision time protocol |
RF | Radio frequency |
SDM | Space division multiplex |
SI | International System of Units |
TAI | International atomic time |
TIC | Time interval counter |
TWSTFT | Two-way satellite time and frequency transfer |
USA | United States of America |
UDP | User datagram protocol |
UTC | Coordinated universal time |
VoD | Video on demand |
VLBI | Very-long-baseline interferometry |
WDM | Wavelength division multiplexing |
WR | White Rabbit |
References
- Cisco Visual Networking Index: Forecast and Trends, 2017–2022. Available online: https://bit.ly/2TYstY8 (accessed on 13 January 2019).
- Mikaeil, A.M.; Hu, W.; Ye, T.; Hussain, S.B. Performance Evaluation of XG-PON Based Mobile Front-Haul Transport in Cloud-RAN Architecture. J. Opt. Commun. Netw. 2017, 9, 984–994. [Google Scholar] [CrossRef]
- Horvath, T.; Munster, P.; Oujezsky, V.; Vojtech, J. Activation Process of ONU in EPON/GPON/XG-PON/ NG-PON2 Networks. Appl. Sci. 2018, 8, 1934. [Google Scholar] [CrossRef]
- Fu, S.; Zeng, L.; Ji, R.; Grillanda, S.; Morichetti, F.; Carminati, M.; Sampietro, M.; Dentin, A.; Dede, A.; Vannucci, A.; et al. Automatic control of the silicon microring OSR and multiplexer in DML-based WDM transmitter for 40G TWDM-PON OLT. In Proceedings of the 2016 IEEE 13th International Conference on Group IV Photonics (GFP), Shanghai, China, 24–26 August 2016; IEEE: Shanghai, China, 2016; pp. 182–183. [Google Scholar]
- Horvath, T.; Munster, P.; Cymorek, P.; Oujezsky, V.; Vojtech, J. Implementation of NG-PON2 transmission convergence layer into OPNET modeler. In Proceedings of the 2017 International Workshop on Fiber Optics in Access Network (FOAN), Munich, Germany, 6–8 November 2017; IEEE: Munich, Germany, 2017; pp. 1–5. [Google Scholar]
- Tian, M.; Wang, L.; Chen, X.; Liu, Y. The investigation on 40G long reach coherent passive optical network. In Proceedings of the 2013 3rd International Conference on Consumer Electronics, Communications and Networks, Xianning, China, 20–22 November 2013; IEEE: Xianning, China, 2013; pp. 684–686. [Google Scholar]
- Suzuki, N.; Miura, H.; Matsuda, K.; Matsumoto, R.; Motoshima, K. 100G to 1T based Coherent PON Technology. In Proceedings of the 2017 European Conference on Optical Communication (ECOC), Gothenburg, Sweden, 17–21 September 2017; IEEE: Gothenburg, Sweden, 2017; pp. 1–3. [Google Scholar]
- Sugimoto, S.; Minemura, K.; Kobayashi, K.; Seki, M.; Shikada, M.; Ueki, A.; Yanase, T.; Miki, T. High-speed digital-signal transmission experiments by optical wavelength-division multiplexing. Electron. Lett. 1977, 13, 680–682. [Google Scholar] [CrossRef]
- Tomlinson, W.J.; Lin, C. Optical wavelength-division multiplexer for the 1–1.4 μm spectral region. Electron. Lett. 1978, 14, 345–347. [Google Scholar] [CrossRef]
- Conradi, J.; Maciejko, R.; Straus, J.; Few, I.; Duck, G.; Sinclair, W.; Springthorpe, A.J.; Dyment, J.C. Laser based WDM multichannel video transmission system. Electron. Lett. 1981, 17, 91–92. [Google Scholar] [CrossRef]
- Wu, K.-L. An optimal circular-waveguide dual-mode filter without tuning screws. IEEE Trans. Microw. Theory Tech. 1999, 47, 271–276. [Google Scholar] [CrossRef]
- Judy, A.F. Optimizing fiber dispersion for DWDM systems. In Proceedings of the Optical Fiber Communication Conference, Dallas, TX, USA, 16–21 February 1997; Optical Society America: Dallas, TX, USA, 1997; pp. 272–273. [Google Scholar]
- G.652: Characteristics of a Single-Mode Optical Fibre and Cable. Available online: https://www.itu.int/rec/T-REC-G.652-201611-I/en (accessed on 13 January 2019).
- Chen, X.; Zeng, J.; Zhao, J.; Wang, Z.; Liu, H. A precise time-integration for analysis of time-domain response to lossy transmission lines. In Proceedings of the 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Datong, China, 15–17 October 2016; IEEE: Datong, China, 2016; pp. 1080–1084. [Google Scholar]
- Vojtech, J.; Slapak, M.; Skoda, P.; Radil, J.; Havlis, O.; Altmann, M.; Munster, P.; Velc, R.; Kundrat, J.; Altmannova, L.; et al. Joint accurate time and stable frequency distribution infrastructure sharing fiber footprint with research network. Opt. Eng. 2017, 56, 027101. [Google Scholar] [CrossRef]
- Ye, Y.; Spina, D.; Xing, Y.; Bogaerts, W.; Dhaene, T. Fast and Accurate Time-Domain Simulation of Passive Photonic Systems. In Proceedings of the 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), Cartagena des Indias, Colombia, 10–14 September 2018; IEEE: Cartagena des Indias, Colombia, 2018; pp. 396–399. [Google Scholar]
- Narbonneau, F.; Lours, M.; Lopez, O.; Daussy, C.; Chambon, S.D.; Bize, S.; Klein, A.A.; Chardonnet, C.; Clairon, A.; Santarelli, G. Ultra-stable ground frequency dissemination via optical fibres. In Proceedings of the 18th European Frequency and Time Forum (EFTF 2004), Guildford, UK, 5–7 April 2004; IEEE: Guildford, UK, 2004; pp. 208–214. [Google Scholar]
- Xu, D.; Lee, W.K.; Stefani, F.; Pottie, P.-E.; Amy-Klein, A.; Lopez, O. Hybrid optical link for ultra-stable frequency comparison. In Proceedings of the 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFC), Besancon, France, 9–13 July 2017; IEEE: Besancon, France, 2017; pp. 160–161. [Google Scholar]
- Wlodarczyk, P.; Krehlik, P.; Sliwczyeski, L. Comparison of highly-stable optical frequency transfer in a single bidirectional and double unidirectional fibers. In Proceedings of the 2018 European Frequency and Time Forum (EFTF), Turin, Italy, 10–12 April 2018; IEEE: Turin, Italy, 2018; pp. 202–204. [Google Scholar]
- Bao, N.-H.; Wu, Y.-K.; Su, G.-Q.; Yuan, Y.; Luo, D.-Y. Hierarchical fairness based re-provisioning in post-disaster telecom networks. In Proceedings of the 2017 International Conference on Computer, Information and Telecommunication Systems (CITS), Dalian, China, 21–23 July 2017; IEEE: Dalian, China, 2017; pp. 330–333. [Google Scholar]
- Cheng, Z.; Zhang, X.; Shen, S.; Yu, S.; Ren, J.; Lin, R. T-Trail: Link Failure Monitoring in Software-Defined Optical Networks. J. Opt. Commun. Netw. 2018, 10, 344–352. [Google Scholar] [CrossRef]
- Bao, N.-H.; Luo, D.-Y.; Chen, J.-B. Reliability threshold based service bandwidth recovery scheme for post-disaster telecom networks. Opt. Fiber Technol. (OFT) 2018, 45, 81–88. [Google Scholar] [CrossRef]
- Udd, E. An overview of fiber-optic sensors. Rev. Sci. Instrum. 1995, 66, 4015–4030. [Google Scholar] [CrossRef]
- Hartog, A.H. An Introduction to Distributed Optical Fibre Sensors (Series in Fiber Optic Sensors); CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Chung, Y.; Jin, W.; Lee, B.; Canning, J.; Nakamura, K.; Yuan, L.; Wang, Z.; Jia, X.; Wu, H.; Peng, F.; et al. Towards ultra-long-distance distributed fiber optic sensing. In Proceedings of the 2017 25th Optical Fiber Sensors Conference (OFS), Jeju, Korea, 24–28 April 2017; IEEE: Jeju, Korea, 2017; p. 103230T. [Google Scholar]
- Munster, P.; Vojtech, J.; Horvath, T.; Havlis, O.; Hanak, P.; Cucka, M.; Filka, M. Simultaneous transmission of distributed sensors and data signals. In Proceedings of the 2016 39th International Conference on Telecommunications and Signal Processing (TSP), Vienna, Austria, 27–29 June 2016; IEEE: Vienna, Austria, 2016; pp. 761–764. [Google Scholar]
- Munster, P.; Horvath, T.; Vojtech, J.; Havlis, O.; Slapak, M.; Skoda, P.; Radil, J.; Velc, R.; Hula, M. Interference of Data Transmission in Access and Backbone Networks by High-Power Sensor System. Fiber Integr. Opt. 2017, 36, 144–156. [Google Scholar] [CrossRef]
- Ludlow, A.D.; Boyd, M.M.; Ye, J.; Peik, E.; Schmidt, P.O. Optical Atomic Clocks. Available online: https://arxiv.org/pdf/1407.3493.pdf (accessed on 14 January 2019).
- Bloom, B.J.; Nicholson, T.L.; Williams, J.R.; Campbell, S.L.; Bishof, M.; Zhang, X.; Zhang, W.; Bromley, S.L.; Ye, J. An optical lattice clock with accuracy and stability at the 1018 level. Nature 2014, 506, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Bordé, C.J. Base units of the SI, fundamental constants and modern quantum physics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2005, 363, 2177–2201. [Google Scholar] [CrossRef] [PubMed]
- Rosenband, T.; Hume, D.B.; Schmidt, P.O.; Chou, C.W.; Brusch, A.; Lorini, L.; Oskay, W.H.; Drullinger, R.E.; Fortier, T.M.; Stalnaker, J.E.; et al. Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place. Science 2008, 319, 1808–1812. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.W.; Hume, D.B.; Rosenband, T.; Wineland, D.J. Optical Clocks and Relativity. Science 2010, 329, 1630–1633. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Lin, S.-Y.; Tseng, W.-H. Fully and optimally use the redundancy in a TWSTFT network for accurate time transfer. In Proceedings of the 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFC), Besancon, France, 9–13 July 2017; IEEE: Besancon, France, 2017; pp. 676–680. [Google Scholar]
- Weiss, M. Getting accurate time from GNSS receivers: Considerations to approach nanosecond time. In Proceedings of the 2017 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS), Monterey, CA, USA, 28 August–1 September 2017; IEEE: Monterey, CA, USA, 2017; pp. 1–5. [Google Scholar]
- Prochazka, I.; Yang, F. Photon counting module for laser time transfer via Earth orbiting satellite. J. Mod. Opt. 2009, 56, 253–260. [Google Scholar] [CrossRef]
- Giorgetta, F.R.; Swann, W.C.; Sinclair, L.C.; Baumann, E.; Coddington, I.; Newbury, N.R. Optical two-way time and frequency transfer over free space. Nat. Photonics 2013, 7, 434–438. [Google Scholar] [CrossRef]
- Ebenhag, S.-C.; Hedekvist, P.O.; Jarlemark, P.; Emardson, R.; Jaldehag, K.; Rieck, C.; Lothberg, P. Measurements and Error Sources in Time Transfer Using Asynchronous Fiber Network. IEEE Trans. Instrum. Meas. 2010, 59, 1918–1924. [Google Scholar] [CrossRef]
- Rost, M.; Piester, D.; Yang, W.; Feldmann, T.; Wübbena, T.; Bauch, A. Time transfer through optical fibres over a distance of 73 km with an uncertainty below 100 ps. Metrologia 2012, 49, 772–778. [Google Scholar] [CrossRef]
- Newbury, N.R. Frequency and Timing Distribution using Optical Methods. In CLEO: 2015; OSA: San Jose, CA, USA, 2015; p. STh3N.5. [Google Scholar]
- Vojtech, J.; Smotlacha, V.; Radil, J. All optical two-way time transfer in strongly heterogeneous networks. In Proceedings Volume 9202, Photonics Applications for Aviation, Aerospace, Commercial, and Harsh Environments V; SPIE: San Diego, CA, USA, 2014; p. 92020S. [Google Scholar]
- Vojtech, J.; Smotlacha, V.; Skoda, P.; Kuna, A.; Hula, M.; Sima, S.; Ardanuy, P.E.; Puschell, J.J.; Bloom, H.J. Photonic services, their enablers and applications. In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 15 May 2012; SPIE: San Diego, CA, USA, 2012; p. 85160H. [Google Scholar]
- Sliwczynski, Ł.; Krehlik, P.; Buczek, Ł.; Lipinski, M. Frequency Transfer in Electronically Stabilized Fiber Optic Link Exploiting Bidirectional Optical Amplifiers. IEEE Trans. Instrum. Meas. 2012, 61, 2573–2580. [Google Scholar] [CrossRef]
- Lopez, O.; Kanj, A.; Pottie, P.-E.; Rovera, D.; Achkar, J.; Chardonnet, C.; Amy-Klein, A.; Santarelli, G. Simultaneous remote transfer of accurate timing and optical frequency over a public fiber network. Appl. Phys. B 2013, 110, 3–6. [Google Scholar] [CrossRef]
- Calonico, D.; Bertacco, E.K.; Calosso, C.; Clivati, C.; Godone, A.; Frittelli, M.; Mura, A.; Zucco, M.; Levi, F.; Costanzo, G.A. Optical frequency transfer with a 1284 km coherent fiber link. In Proceedings of the 2014 European Frequency and Time Forum (EFTF), Neuchatel, Switzerland, 23–26 June 2014; IEEE: Neuchatel, Switzerland, 2014; pp. 1–4. [Google Scholar]
- Zhang, H.; Wu, G.; Hu, L.; Li, X.; Chen, J. High-Precision Time Transfer over 2000-km Fiber Link. IEEE Photon. J. 2015, 7, 1–9. [Google Scholar] [CrossRef]
- Vojtech, J.; Smotlacha, V.; Skoda, P. Simultaneous transmission of accurate time in parallel with stable optical frequency in real fibre network over 612 km. In Proceedings of the 2015 Optoelectronics Global Conference (OGC), Shenzhen, China, 29–31 August 2015; IEEE: Shenzhen, China, 2015; pp. 1–3. [Google Scholar]
- Lopez, O.; Haboucha, A.; Chanteau, B.; Chardonnet, C.; Amy-Klein, A.; Santarelli, G. Ultra-stable long distance optical frequency distribution using the Internet fiber network. Opt. Express 2012, 20, 23518–23526. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Gao, C.; Chen, W.L.; Miao, J.; Zhu, X.; Bai, Y.; Zhang, J.W.; Feng, Y.Y.; Li, T.C.; Wang, L.J. Precise and Continuous Time and Frequency Synchronisation at the 5· 10−19 Accuracy Level. Sci. Rep. 2012, 2, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Lopez, O.; Chardonnet, C.; Amy-Klein, A.; Kanj, A.; Pottie, P.-E.; Rovera, D.; Achkar, J.; Santarelli, G. Simultaneous remote transfer of accurate timing and optical frequency over a public fiber network. In Proceedings of the 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), Prague, Czech Republic, 21–25 July 2013; IEEE: Prague, Czech Republic, 2013; pp. 474–476. [Google Scholar]
- Lopez, O.; Chanteau, B.; Bercy, A.; Nicolodi, D.; Zhang, W.; Argence, B.; Abgrall, M.; Haboucha, A.; Kanj, A.; Rovera, D.; et al. Ultra-stable long distance optical frequency distribution using the Internet fiber network and application to high-precision molecular spectroscopy. J. Phys. Conf. Ser. 2013, 467, 1–6. [Google Scholar] [CrossRef]
- Munster, P.; Radil, J.; Vojtech, J.; Havlis, O.; Horvath, T.; Smotlacha, V.; Skaljo, E. Simultaneous transmission of the high-power phase sensitive OTDR, 100Gbps dual polarisation QPSK, accurate time/frequency, and their mutual interferences. In Proceedings Volume 10208, Fiber Optic Sensors and Applications XIV; SPIE: Anaheim, CA, USA, 2017; p. 102080D-7. [Google Scholar]
- Horvath, T.; Munster, P.; Vojtech, J.; Velc, R.; Oujezsky, V. Simultaneous transmission of accurate time, stable frequency, data, and sensor system over one fiber with ITU 100-GHz grid. Opt. Fiber Technol. 2018, 40, 139–143. [Google Scholar] [CrossRef]
- Munster, P.; Horvath, T.; Havlis, O.; Vojtech, J.; Radil, J.; Velc, R.; Skaljo, E. Simultaneous transmission of standard data, precise time, stable frequency and sensing signals and their possible interaction. In Proceedings Volume 10231, Optical Sensors 2017; SPIE: Prague, Czech Republic, 2017; p. 102312A-7. [Google Scholar]
- Dostal, J.; Smotlacha, V. Next generation of architecture for precise time measurements. In Proceedings of the 2015 IEEE East-West Design & Test Symposium (EWDTS), Batumi, Georgia, 26–29 September 2015; IEEE: Batumi, Georgia, 2015; pp. 1–3. [Google Scholar]
- Smotlacha, V.; Vojtech, J. Accurate time distribution using optical fiber. In Proceedings of the 2015 International Association of Institutes of Navigation World Congress (IAIN), Prague, Czech Republic, 20–23 October 2015; IEEE: Prague, Czech Republic, 2015; pp. 1–5. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horvath, T.; Munster, P.; Vojtech, J.; Smotlacha, V. Simultaneous Transmission of Photonic Services over One Fiber with an ITU 100 GHz Grid. Sensors 2019, 19, 1601. https://doi.org/10.3390/s19071601
Horvath T, Munster P, Vojtech J, Smotlacha V. Simultaneous Transmission of Photonic Services over One Fiber with an ITU 100 GHz Grid. Sensors. 2019; 19(7):1601. https://doi.org/10.3390/s19071601
Chicago/Turabian StyleHorvath, Tomas, Petr Munster, Josef Vojtech, and Vladimir Smotlacha. 2019. "Simultaneous Transmission of Photonic Services over One Fiber with an ITU 100 GHz Grid" Sensors 19, no. 7: 1601. https://doi.org/10.3390/s19071601
APA StyleHorvath, T., Munster, P., Vojtech, J., & Smotlacha, V. (2019). Simultaneous Transmission of Photonic Services over One Fiber with an ITU 100 GHz Grid. Sensors, 19(7), 1601. https://doi.org/10.3390/s19071601