Enhanced Electrochemical Response of Diclofenac at a Fullerene–Carbon Nanofiber Paste Electrode
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural and Morphological Characterization
3.2. Cyclic Voltammetry
3.3. Analytical Applications
3.3.1. DPV and SWV
3.3.2. CA and MPA
- +0.3 V/SCE for a duration of 100 ms, where fullerene is in the reduced form;
- +0.5 V/SCE for a duration of 100 ms, where reduced fullerene is oxidized;
- −0.3 V/SCE for a duration of 100 ms, where H2 evolution occurs alongside other reduction processes;
- +1 V/SCE for a duration of 50 ms, considering the detection potential that corresponded to DCF oxidation.
3.3.3. Analysis of DCF in Spiked Tap Water
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oaks, J.L.; Gilbert, M.; Virani, M.Z.; Watson, R.T.; Meteyer, C.U.; Rideout, B.; Shivaprasad, H.L.; Ahmed, S.; Jamshed Iqbal Chaudhry, M.; Arshad, M.; et al. Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 2004, 427, 630–633. [Google Scholar] [CrossRef] [PubMed]
- Risebrough, R. Conservation biology: Fatal medicine for vultures. Nature 2004, 427, 596–598. [Google Scholar] [CrossRef] [PubMed]
- Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off. J. Eur. Union 2013, L226, 1–17.
- Tavazzi, S.; Paracchini, B.; Suurkuusk, G.; Mariani, G.; Loos, R.; Ricci, M.; Gawlik, B.M. Analysis of diclofenac in water, Water Framework Directive, Watch List Methods, JRC Technical Reports. Publ. Off. Eur. Union 2014. [Google Scholar] [CrossRef]
- Schmidt, S.; Hoffman, H.; Garbe, L.A. Liquid chromatography-tandem mass spectrometry detection of diclofenac and related compounds in water samples. J. Cromatogr. A 2018, 1538, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Manea, F.; Ihos, M.; Remes, A.; Burtica, G.; Schoonman, J. Electrochemical determination of diclofenac sodium in aqueous solution on Cu-doped zeolite-expanded graphite-epoxy electrode. Electroanalysis 2010, 22, 2058–2063. [Google Scholar] [CrossRef]
- Ihos, M.; Remes, A.; Manea, F. Electrochemical determination of diclofenac using boron-doped diamond electrode. J. Environ. Prot. Ecol. 2012, 13, 2096–2103. [Google Scholar]
- Motoc, S.; Manea, F.; Iacob, A.; Martinez-Joaristi, A.; Gascon, J.; Pop, A.; Schoonman, J. Electrochemical selective and simultaneous detection of diclofenac and ibuprofen in aqueous solution using HKUST-1 metal-organic framework-carbon nanofiber composite electrode. Sensors 2016, 16, 1719. [Google Scholar] [CrossRef]
- Afkhami, A.; Bahiraei, A.; Madrakian, T. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Mater. Sci. Eng. C 2016, 59, 168–176. [Google Scholar] [CrossRef]
- Aguilar-Lira, G.Y.; Álvarez-Romero, G.A.; Zamora-Suárez, A.; Palomar-Pardavé, M.; Rojas-Hernández, A.; Rodríguez-Ávila, J.A.; Páez-Hernández, M.E. New insights on diclofenac electrochemistry using graphite as working electrode. J. Electroanal. Chem. 2017, 794, 182–188. [Google Scholar] [CrossRef]
- Shalauddin, M.; Akhter, S.; Bagheri, S.; Karim, M.S.A.; Kadri, N.A.; Basirun, W.J. Immobilized copper ions on MWCNTS-Chitosan thin film: Enhanced amperometric sensor for electrochemical determination of diclofenac sodium in aqueous solution. Int. J. Hydrog. Energy 2017, 42, 19951–19960. [Google Scholar] [CrossRef]
- Eteya, M.M.; Rounaghi, G.H.; Deiminiat, B. Fabrication of a new electrochemical sensor based on Au-Pt bimetallic nanoparticles decorated multi-walled carbon nanotubes for determination of diclofenac. Microchem. J. 2019, 144, 254–260. [Google Scholar] [CrossRef]
- Mofidi, Z.; Norouzi, P.; Seidi, S.; Ganjali, M.R. Determination of diclofenac using electromembrane extraction coupled with stripping FFT continuous cyclic voltammetry. Anal. Chim. Acta 2017, 972, 38–45. [Google Scholar] [CrossRef]
- Sherigara, B.; Kutner, W.; D’Souza, F. Electrocatalytic properties and sensor applications of fullerene and carbon nanotubes. Electroanalysis 2003, 15, 753–772. [Google Scholar] [CrossRef]
- Rather, J.A.; de Wael, K. Fullerene-C60 sensor for ultra-high sensitive detection of bisphenol-A and its treatment by green technology. Sens. Actuators B Chem. 2013, 176, 110–117. [Google Scholar] [CrossRef]
- Zhang, X.; Jiao, K.; Iao, G.; Liu, S.; Li, S. Voltammetric study of fullerene C60 and fullerene C60 nanotubes with sandwich method. Synth. Met. 2009, 159, 419–423. [Google Scholar] [CrossRef]
- Pilehvar, S.; De Wael, K. Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms. Biosensors 2015, 5, 712–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baig, N.; Sajid, M.; Saleh, T.A. Recent trends in nanomaterial-modified electrodes for electroanalytical applications. Trends Anal. Chem. 2019, 111, 47–61. [Google Scholar] [CrossRef]
- Sukanya, R.; Sakthivel, M.; Chen, S.-M.; Chen, T.-W. A new type of terbium diselenide nanooctagon integrated oxidized carbon nanofiber: An efficient electrode material for electrochemical detection of morin in the food sample. Sens. Actuators B Chem. 2018, 269, 354–367. [Google Scholar] [CrossRef]
- Achargui, N.; Chkairi, W.; Chafiki, W.; Elbasri, M.; AlamiYounssi, S.; El Rhazi, M. Electrochemical behavior of carbon paste electrode modified with Carbon Nanofibers: Application to detection of Bisphenol A. Int. J. Eng. Res. Appl. 2016, 6, 23–29. [Google Scholar]
- Rather, J.A.; de Wael, K. C60-functionalized MWCNT based sensor for sensitive detection of endocrine disruptor vinclozolin in solubilized system and wastewater. Sens. Actuators B Chem. 2012, 171–172, 907–915. [Google Scholar] [CrossRef]
- Zhu, H.; Wu, W.; Zhang, H.; Fan, L.; Yang, S. Highly selective and sensitive detection of dopamine in the presence of excessive ascorbic acid using electrodes modified with C60-functionalized multiwalled carbon nanotube films. Electroanalysis 2009, 21, 2660–2666. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, L.; Yang, S. Significantly accelerated direct electron-transfer kinetics of hemoglobin in a C60-MWCNT nanocomposite film. Chem. A Eur. J. 2006, 12, 7161–7166. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhao, W.; Liu, S.; Cen, Q.; Xue, Q. Comparative tribological and corrosuin resistance properties of epoxy composite coatings reinforced with functionalized fullerene C60 and graphene. Surf. Coat. Technol. 2016, 286, 354–364. [Google Scholar] [CrossRef]
- Ibupoto, A.S.; Qureshi, U.A.; Ahmed, A.; Khatri, Z.K.; Khatri, M.; Maqsood, M.; Brohi, R.Z.; Kim, I.S. Reusable carbon nanofibers for efficient removal of methylene blue from aqueous solution. Chem. Eng. Res. Des. 2018, 136, 744–752. [Google Scholar] [CrossRef]
- Lao, L.; Huang, Y.; Zheng, Y.; Yang, X.; Liu, C.; Di, M.; Larpkiattaworn, S.; Nimlos, M.R.; Zheng, Z. Porous carbon nanofiber derived from a waste biomass as anode material in lithium-ion batteries. J. Taiwan Inst. Chem. Eng. 2019, 95, 217–226. [Google Scholar] [CrossRef]
- Konopka, S.J.; McDuffie, B. Diffusion coefficients of ferri- and ferrocyanide ions in aqueous media, using twin-electrode thin-layer electrochemistry. Anal. Chem. 1970, 42, 1741–1746. [Google Scholar] [CrossRef]
- Manea, F.; Pop, A.; Radovan, C.; Malchev, P.; Bebeselea, A.; Burtica, G.; Picken, S.; Schoonman, J. Voltammetric detection of urea on an Ag-modified zeolite-expanded graphite-epoxy composite. Sensors 2008, 8, 5806–5819. [Google Scholar] [CrossRef]
- Johnson, D.C.; LaCourse, W.R. Pulsed electrochemical detection at noble metal electrodes in liquid chromatography. Electoanalysis 1992, 4, 367–380. [Google Scholar] [CrossRef]
- Pop, A.; Manea, F.; Flueras, A.; Schoonman, J. Simultaneous voltammetric detection of carbaryl and paraquat pesticides on graphene-modified boron-doped diamond electrode. Sensors 2017, 17, 2033. [Google Scholar] [CrossRef]
Technique | Conditions, E/V vs. SCE | Sensitivity μA·µM−1 | Correlation Coefficient (R2) | LOD a (µM) | LQ b (µM) | RSD c (%) |
---|---|---|---|---|---|---|
CV | +0.75 | 0.642 | 0.952 | 0.0568 | 0.1893 | 0.1531 |
DPV | +0.77 | 0.689 | 0.992 | 0.0102 | 0.0341 | 1.0097 |
SWV | +0.75 | 1.076 | 0.955 | 0.0009 | 0.0029 | 0.1028 |
CA | +1 V | 0.077 | 0.990 | 0.0905 | 0.3019 | 0.3733 |
CA | +1 V | 0.080 | 0.988 | 1.2788 | 4.2628 | 1.8678 |
−0.3 V | 0.021 | 0.975 | 4.4203 | 14.7345 | 1.7280 | |
MPA | −0.3 V−0.05 s | 6.450 | 0.977 | 6.1520 | 20.5068 | 2.8758 |
+1 V−0.05 s | 0.916 | 0.964 | 14.9974 | 49.9915 | 1.1871 | |
MPA | +0.3 V−0.1 s | - d | - | - | - | - |
+0.5 V−0.1 s | - | - | - | - | - | |
−0.3 V−0.1 s | 4.318 | 0.997 | 3.1324 | 10.4413 | 2.6473 | |
+1 V−0.05 s | 4.000 | 0.983 | 1.8874 | 6.2915 | 0.4043 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motoc, S.; Manea, F.; Orha, C.; Pop, A. Enhanced Electrochemical Response of Diclofenac at a Fullerene–Carbon Nanofiber Paste Electrode. Sensors 2019, 19, 1332. https://doi.org/10.3390/s19061332
Motoc S, Manea F, Orha C, Pop A. Enhanced Electrochemical Response of Diclofenac at a Fullerene–Carbon Nanofiber Paste Electrode. Sensors. 2019; 19(6):1332. https://doi.org/10.3390/s19061332
Chicago/Turabian StyleMotoc, Sorina, Florica Manea, Corina Orha, and Aniela Pop. 2019. "Enhanced Electrochemical Response of Diclofenac at a Fullerene–Carbon Nanofiber Paste Electrode" Sensors 19, no. 6: 1332. https://doi.org/10.3390/s19061332
APA StyleMotoc, S., Manea, F., Orha, C., & Pop, A. (2019). Enhanced Electrochemical Response of Diclofenac at a Fullerene–Carbon Nanofiber Paste Electrode. Sensors, 19(6), 1332. https://doi.org/10.3390/s19061332