Sensitivity Enhancement of Two-Dimensional Materials Based on Genetic Optimization in Surface Plasmon Resonance
Abstract
:1. Introduction
2. Modeling
3. Genetic Optimization
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Löfås, S.; Malmqvist, M.; Rönnberg, I.; Stenberg, E.; Bo, L.; Lundström, I. Bioanalysis with surface plasmon resonance. Sens. Actuators B 1991, 5, 79–84. [Google Scholar] [CrossRef]
- Ritchie, R.H. Plasma losses by fast electrons in thin films. Phys. Rev. 1957, 106, 874–881. [Google Scholar] [CrossRef]
- Shankaran, D.R.; Gobi, K.V.; Miura, N. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens. Actuators B Chem. 2007, 121, 158–177. [Google Scholar] [CrossRef]
- Yanase, Y.; Hiragun, T.; Ishii, K.; Kawaguchi, T.; Yanase, T.; Kawai, M.; Sakamoto, K.; Hide, M. Surface Plasmon Resonance for Cell-Based Clinical Diagnosis. Sensors 2014, 14, 4948–4959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yakes, B.J.; Deeds, J.; White, K.; Degrasse, S.L. Evaluation of surface plasmon resonance biosensors for detection of tetrodotoxin in food matrices and comparison to analytical methods. J. Agric. Food Chem. 2011, 59, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.N.; Srivastava, R.; Groger, H.; Lo, P.; Luo, S.F. A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors. Sens. Actuators A Phys. 1995, 51, 211–217. [Google Scholar] [CrossRef]
- Healy, D.A.; Hayes, C.J.; Leonard, P.; McKenna, L.; O’Kennedy, R. Biosensor developments: Application to prostate-specific antigen detection. Trends Biotechnol. 2007, 25, 125–131. [Google Scholar] [CrossRef]
- Salamon, Z.; Macleod, H.A.; Tollin, G. Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Applications to biological systems. Biochim. Biophys. Acta (Bba) Rev. Biomembr. 1997, 1331, 117–129. [Google Scholar] [CrossRef]
- Zynio, S.A.; Samoylov, A.V.; Surovtseva, E.R.; Mirsky, V.M.; Shirshov, Y.M. Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors 2002, 2, 62–70. [Google Scholar] [CrossRef]
- Gupta, G.; Kondoh, J. Tuning and sensitivity enhancement of surface plasmon resonance sensor. Sens. Actuators B Chem. 2007, 122, 381–388. [Google Scholar] [CrossRef]
- Kim, D.; Byun, K.M.; Yoon, S.J.; Kim, S.J. Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires. Opt. Lett. 2007, 32, 1902–1904. [Google Scholar]
- Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2d materials beyond graphene. Prog. Mater. Sci. 2015, 73, 44–126. [Google Scholar] [CrossRef]
- Wu, L.; Chu, H.S.; Koh, W.S.; Li, E.P. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 2010, 18, 14395–14400. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Gupta, B.D.; Jha, R. Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens. Actuators B Chem. 2011, 160, 623–631. [Google Scholar] [CrossRef]
- Ouyang, Q.; Zeng, S.; Jiang, L.; Hong, L.; Xu, G.; Dinh, X.Q.; et al. Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci. Rep. 2016, 6, 28190. [Google Scholar] [CrossRef] [PubMed]
- Maurya, J.B.; Prajapati, Y.K.; Singh, V.; Saini, J.P.; Tripathi, R. Improved performance of the surface plasmon resonance biosensor based on graphene or MoS2 using silicon. Opt. Commun. 2016, 359, 426–434. [Google Scholar] [CrossRef]
- Wu, L.; Guo, J.; Wang, Q.; Lu, S.; Dai, X.; Xiang, Y.; Fan, D. Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators B Chem. 2017, 249, 542–548. [Google Scholar] [CrossRef]
- Meshginqalam, B.; Barvestani, J. Performance enhancement of SPR biosensor based on phosphorene and transition metal dichalcogenides for sensing DNA hybridization. IEEE Sens. J. 2018, 18, 7537–7543. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, L.; Ang, Y.S. MoS2-Based Highly Sensitive Near-Infrared Surface Plasmon Resonance Refractive Index Sensor. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–7. [Google Scholar]
- Xu, Y.; Hsieh, C.Y.; Wu, L. Two-dimensional transition metal dichalcogenides mediated long range surface plasmon resonance biosensors. J. Phys. D Appl. Phys. 2018, 52, 065101. [Google Scholar] [CrossRef]
- Xu, Y.; Ang, Y.S.; Wu, L.; Ang, L.K. High Sensitivity Surface Plasmon Resonance Sensor Based on Two-Dimensional MXene and Transition Metal Dichalcogenide: A Theoretical Study. Nanomaterials 2019, 9, 165. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, F.; Maisonneuve, M.; Meunier, M.; Aitchison, J.S.; Mojahedi, M. An improved refractive index sensor based on genetic optimization of plasmon waveguide resonance. Opt. Express 2013, 21, 20863–20872. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, G.; Mattei, G. High-performance magneto-optic surface plasmon resonance sensor design: An optimization approach. Plasmonics 2014, 9, 1457–1462. [Google Scholar] [CrossRef]
- Benazize, S.; Dibi, Z.; Benaziez, N. Optimization of the graphene-silver based surface plasmon resonance (SPR) sensor. Univ. Politeh. Buchar. Sci. Bull. Ser. B 2018, 80, 1454–2331. [Google Scholar]
- Manera, M.G.; Pellegrini, G.; Lupo, P.; De Julián Fernández, C.; Casoli, F.; Rella, S.; Malitesta, C.; Albertini, F.; Mattei, G.; Rella, R. Functional magneto-plasmonic biosensors transducers: Modelling and nanoscale analysis. Sens. Actuators B Chem. 2017, 239, 100–112. [Google Scholar] [CrossRef]
- Srinivas, M.; Patnaik, L.M. Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans. Syst. Man Cybern. 2002, 24, 656–667. [Google Scholar] [CrossRef]
- Srinivas, N.; Kalyanmoy, D. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2014, 2, 221–248. [Google Scholar] [CrossRef]
Type of 2D Materials | Thickness of Monolayer (nm) | Refractive Index |
---|---|---|
BP | 0.53 | 3.5 + 0.01i |
graphene | 0.34 | 3 + 1.1491i |
MoS2 | 0.65 | 5.08 + 1.1723i |
WS2 | 0.8 | 4.9 + 0.3124i |
MoSe2 | 0.7 | 4.62 + 1.0063i |
WSe2 | 0.7 | 4.55 + 0.4332i |
Type of 2D Materials | Layers (L) | Sensitivity (°/RIU) |
---|---|---|
graphene | 5 | 217 |
MoS2 | 1 | 218 |
WS2 | 1 | 237 |
MoSe2 | 2 | 229 |
WSe2 | 2 | 279 |
Sensor Structure | Ag (nm) | N | L | S (°/RIU) |
---|---|---|---|---|
Ag +N*BP+L*Graphene | 65 | 12 | 2 | 300 |
Ag +N*BP+L*MoS2 | 55 | 11 | 1 | 280 |
Ag +N*BP+L*WS2 | 56 | 11 | 1 | 340 |
Ag +N*BP+L*MoSe2 | 47 | 12 | 1 | 280 |
Ag +N*BP+L*WSe2 | 50 | 12 | 1 | 340 |
Sensor Structure | Au (nm) | N | L | Smax (°/RIU) | Save (°/RIU) |
---|---|---|---|---|---|
Au | 55 | 0 | 0 | 90 | 78 |
Au +N*BP | 49 | 13 | 0 | 190 | 144 |
Au +N*BP+L*Graphene | 50 | 12 | 1 | 183.33 | 137.33 |
Au +N*BP+L*MoS2 | 45 | 10 | 1 | 163.33 | 126 |
Au +N*BP+L*WS2 | 53 | 9 | 1 | 183.33 | 133.333 |
Au +N*BP+L*MoSe2 | 50 | 10 | 1 | 163.33 | 129.33 |
Au +N*BP+L*WSe2 | 54 | 10 | 1 | 180 | 136 |
Configuration | Silver (nm) | BP (L) | Graphene (L) | MoS2 (L) | WS2 (L) | MoSe2 (L) | WSe2 (L) | Smax | S1.330–1.355/Save | FOM1.330–1.355 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 53 | 12 | 0 | 0 | 0 | 0 | 0 | 380 | 320 | 52.46 |
2 | 49 | 12 | 0 | 0 | 0 | 0 | 0 | 400 | 308 | 49.68 |
3 | 42 | 12 | 1 | 0 | 0 | 0 | 0 | 320 | 276 | 36.32 |
4 | 52 | 9 | 1 | 1 | 0 | 0 | 0 | 260 | 236 | 26.52 |
5 | 66 | 7 | 0 | 0 | 1 | 0 | 1 | 300 | 268 | 34.81 |
6 | 50 | 7 | 0 | 0 | 1 | 1 | 0 | 280 | 244 | 28.37 |
7 | 48 | 5 | 0 | 0 | 2 | 0 | 1 | 280 | 252 | 30.00 |
8 | 54 | 1 | 3 | 1 | 1 | 1 | 1 | 200 | 192 | 17.14 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, G.; Zhou, C.; Jin, S.; Huang, C.; Xing, J.; Liu, Z. Sensitivity Enhancement of Two-Dimensional Materials Based on Genetic Optimization in Surface Plasmon Resonance. Sensors 2019, 19, 1198. https://doi.org/10.3390/s19051198
Xia G, Zhou C, Jin S, Huang C, Xing J, Liu Z. Sensitivity Enhancement of Two-Dimensional Materials Based on Genetic Optimization in Surface Plasmon Resonance. Sensors. 2019; 19(5):1198. https://doi.org/10.3390/s19051198
Chicago/Turabian StyleXia, Guo, Cuixia Zhou, Shiqun Jin, Chan Huang, Jinyu Xing, and Zhijian Liu. 2019. "Sensitivity Enhancement of Two-Dimensional Materials Based on Genetic Optimization in Surface Plasmon Resonance" Sensors 19, no. 5: 1198. https://doi.org/10.3390/s19051198
APA StyleXia, G., Zhou, C., Jin, S., Huang, C., Xing, J., & Liu, Z. (2019). Sensitivity Enhancement of Two-Dimensional Materials Based on Genetic Optimization in Surface Plasmon Resonance. Sensors, 19(5), 1198. https://doi.org/10.3390/s19051198